
JSC 38606

Guidelines for the Rapid Development
of Software Systems

— References —

ENGINEERING DIRECTORATE

AEROSCIENCE AND FLIGHT MECHANICS DIVISION

2 December 1996

National Aeronautics and
Space Administration

Lyndon B. Johnson Space Center
Houston, TX

 JSC 38606

Guidelines for the Rapid Development
of Software Systems

— References —

Prepared By:

___________________________________ ___________________________________

Denise M. DiFilippo Bill G. Brown
G. B. Tech, Incorporated SysComm Development

Approved By:

___________________________________ ___________________________________

David A. Petri James P. Ledet
GN&C Rapid Development Lab Manager Code Q RTOP Project Manager
Aeroscience and Flight Mechanics Division Aeroscience and Flight Mechanics Division
NASA/Johnson Space Center NASA/Johnson Space Center

Concurred By:

___________________________________ ___________________________________

Aldo J. Bordano, Chief Sonya F. Sepahban, Deputy Chief
Aeroscience and Flight Mechanics Division Aeroscience and Flight Mechanics Division
NASA/Johnson Space Center NASA/Johnson Space Center

Preface

This document (JSC 38606) contains reference material that was cited in a companion
document (JSC 38605) and that is not commonly available in technical libraries. Primarily,
these are internal working papers related to the study subject. Together the documents
represent the results of work performed in FY’96 with funds provided under the Research and
Technology Operation Plan (RTOP) by the Office of Safety and Mission Assurance (OSMA).
OSMA has delegated requirements for the Agency Software Program to Ames Research
Center Software Technology Division (ARC/IT) located in Fairmont, West Virginia. Work under
this initiative was managed at ARC/IT by Kathryn M. Kemp, Deputy Chief, Software
Technology Division, and George J. Sabolish, Center Software Initiative Manager. The work
was performed in the Aeroscience and Flight Mechanics Division at the Johnson Space
Center in collaboration with the Jet Propulsion Laboratory.

The results of FY’96 work are documented in a 2 volume set consisting of:
• JSC 38605 Guidelines for the Rapid Development of Software Systems
• JSC 38606 Guidelines for the Rapid Development of Software Systems - References

This initiative continues in FY’97 with the objective of determining the effectiveness of the
guidelines by using them in a rapid software development demonstration project. The results
of the demonstration project will be documented along with any refinement to these
guidelines.

Table of Contents

1. J.M. Ball & E.J. Riel, “Strategic Avionics Technology Program: Rapid Prototyping & Inte-
grated Design Application Studies, Final Report”; NAS9-18877, February 1995.

2. J.M. Ball, D.C. Weed & E.J. Riel, “Strategic Avionics Technology Program: Rapid Prototyp-
ing & Integrated Design Application Studies, White Paper, Rapid Development Process”;
NAS9-18877, February 1995.

3. D. M. DiFilippo, “Aeroscience & Flight Mechanics Division (AFMD) Guidance, Navigation &
Control (GN&C) Rapid Development Laboratory Processes: Historical Perspective”;
McDonnell Douglas TM-960030-03, May 1, 1996.

4. D. Pesek, “Rapid Development Lab Configuration Management Plan”; internal document,
October 1995.

5. Rapid Prototyping Simulation Development Team, “Soyuz ACRV Simulation Development
Progress Report, April-May 1993”; McDonnell Douglas TM-6.23.07-24; June 30, 1993.

6. Rapid Prototyping Simulation Development Team, “Soyuz ACRV Simulation Development
Lessons Learned Report”; McDonnell Douglas TM-0009-01 enclosure 1; January 28,
1994.

7. Rapid Prototyping Simulation Development Team, “Soyuz ACRV Simulation Development
Assurance and Test Report”; McDonnell Douglas TM-0009-01 enclosure 2; January 28,
1994

8. Rapid Prototyping Simulation Development Team, “Soyuz ACRV Simulation Development
Configuration Management Plan”; McDonnell Douglas TM-0009-01 enclosure 3; January
28, 1994

9. Rapid Prototyping Simulation Development Team, “Soyuz ACRV Simulation Development
Trip Report, Summary of Trip to MDA-Huntington Beach”; McDonnell Douglas TM-0009-
01 enclosure 4; January 28, 1994

10.J. Uhde & D. Weed, “Library Reuse in a Rapid Development Environment”; Proceedings
of the AIAA Conference on Computing & Aerospace X, March 28-30, 1995, San Antonio,
TX; pp. 521-530.

11.J. Uhde-Lacovara, D. Weed, B. McCleary, & R. Wood, “The Rapid Development Process
Applied to Soyuz Simulation Production”, internal document, 1994

Aeroscience & Flight Mechanics Division (AFMD) Guidance, Navigation
& Control (GN&C) Rapid Development Laboratory Processes:

Historical Perspective

01 May 1996

D. M. DiFilippo

Process Definition for Rapid Development of Software

McDonnell Douglas Aerospace
Space and Defense Systems - Houston Division

13100 Space Center Blvd.
Houston, Texas 77059-3556

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
JOHNSON SPACE CENTER

In Accordance with NASA Contract NAS9-19100
Subcontract 02C0100001

Delivered to NASA in MDA-HD Transmittal Memo TM-960030-03

AFMD GN&C Rapid Development Laboratory Processes: Historical Perspective TM-960030-03 Enclosure
01 May 1996

Table of Contents

Section page

1.0 Introduction.. 1

2.0 The Rapid Software Development Paradigm .. 1

3.0 The JSC GN&C Rapid Development Laboratory .. 3

4.0 The Soyuz Assured Crew Return Vehicle Simulation.................................. 5

5.0 Rapid Software Development Results and Lessons Learned 6

6.0 Topics for Further Study .. 7

7.0 Early Thoughts and Special Concerns.. 8

8.0 RTOP Plans and Schedule.. 10

9.0 Related Documents... 10

Figures

Figure Page

1 The Rapid Development Process.. 2

2 The Design Team Concept .. 3

3 Soyuz Simulation Development Model... 6

Tables

Table Page

1 Software Tools in the RDL... 4

2 Hardware Tools in the RDL.. 4

3 Soyuz Simulation Phase 1 and 2 Metrics... 7

AFMD GN&C Rapid Development Laboratory Processes: Historical Perspective TM-960030-03 Enclosure
01 May 1996

Acronyms and Abbreviations

ACRV Assured Crew Return Vehicle
AFMD Aeroscience and Flight Mechanics Division
COTS commercial, off-the-shelf
CMM Capability Maturity Model
DOF degree-of-freedom
GN&C Guidance, Navigation & Control
HIL hardware-in-the-loop
ISI Integrated Systems Inc.
ISSA International Space Station Alpha
JPL Jet Propulsion Laboratory
JSC Johnson Spaceflight Center
MDA-HD McDonnell Douglas Aerospace – Houston Division
RDL Rapid Development Laboratory
RTOP Research and Technology Objectives and Plan
SEI Software Engineering Institute

AFMD GN&C Rapid Development Laboratory Processes: Historical Perspective TM-960030-03 Enclosure
Section 1.0 Introduction 01 May 1996

Page 1

1.0 Introduction

The Aeroscience and Flight Mechanics Division (AFMD) at the National Aeronautics and
Space Administration-Johnson Space Center (NASA-JSC) Engineering Directorate is explor-
ing ways of producing Guidance, Navigation & Control (GN&C) systems more efficiently and
effectively. A significant portion of this effort is software development, integration, testing and
verification.

To achieve these goals, in the late 1980’s AFMD established the GN&C Rapid Development
Laboratory (RDL), a hardware/software facility designed to take a GN&C design project from
initial inception through high-fidelity, real-time, hardware-in-the-loop (HIL) testing and perform
final, end-to-end, GN&C system verification. The operations approach for the RDL concen-
trated on the use of commercial, off-the-shelf (COTS) software products to develop the
GN&C algorithms in the form of graphical data flow diagrams, to automatically generate
source code from these diagrams and to run in a real-time, HIL environment under a rapid
development paradigm.

As an initial application of these concepts and tools, AFMD took on the development of a
real-time, six degree-of-freedom (DOF) simulation of the Russian Soyuz vehicle. The pro-
cesses and tools used in this effort, along with the lessons learned, were encouraging and,
overall, support the premise of the RDL and the experiences and knowledge of the RDL
team. That is, these new methodologies and tools can be applied to the development of sim-
ulation and flight software for complicated Guidance, Navigation & Control (GN&C) systems
to improve quality, reduce the development time, reduce the cost, reduce project risk, or
some combination of these.

Building on this initial work and on-going flight software development projects for X-vehicles,
an RTOP (Research and Technology Objectives and Plan) was proposed and accepted to
define and document generic, rigorous, reference processes and metrics for rapid develop-
ment and integrated design and verification of flight software. This paper represents the kick-
off point for the RTOP, describing the status of Rapid Application Development in GN&C at
JSC. Some areas of special interest and initial questions, concerns and ideas are also pre-
sented.

2.0 The Rapid Software Development Paradigm

The rapid development process is a relatively new paradigm for hardware and software
development that utilizes features of the spiral development model, rapid prototyping, and
incremental development through the product development lifecycle. The process utilizes
state-of-the-art computer-aided system engineering and software engineering tools which
combine a graphical designer’s environment with automatic software code generation and
documentation.

The rapid development paradigm for software system development differs from the classic
waterfall methodology in that it uses a spiral development process (Boehm, 1988). This is

AFMD GN&C Rapid Development Laboratory Processes: Historical Perspective TM-960030-03 Enclosure
Section 2.0 The Rapid Software Development Paradigm 01 May 1996

Page 2

characterized by a “build a little, test a little”, and in the GN&C environment “fly a little”, phi-
losophy, with ample opportunity for feedback from and active participation of analysts,
designers, programmers and users. The spiral development process accelerates system
development through concurrent iteration on system requirements, design, code, unit test,
and system integrated test issues and processes rather than the sequential execution of
these processes found in the classic development methodology.

Figure 1. The Rapid Development Process

Rapid development projects are also characterized by the integration of all hardware and
software elements early in the development cycle. This serves to identify requirements
issues and system integration and connectivity problems early, so that they can be
addressed and fixed at a phase in the development cycle which can accommodate the modi-
fications with minimal impact and cost, resulting in lower risks.

This approach to software development is organized around a design team which assumes
ownership of the entire development process and end products. Critical elements of the
design team include a core development team and domain experts. The small core team
(usually 1 to 5 people, depending on project size and complexity) integrates all project ele-
ments, provides configuration control functions, administers quality control processes, and
ensures the project remains focused. Domain experts provide technical expertise across the
range of technical disciplines in the project. The team structure contributes to the rapid eval-
uation, redesign and reimplementation of each successive, improved, prototype.

In the GN&C RDL to date, a key feature of rapid development has been the use of advanced
software development tools that tightly integrate design and analysis, documentation and
automatic code generation.

AFMD GN&C Rapid Development Laboratory Processes: Historical Perspective TM-960030-03 Enclosure
Section 3.0 The JSC GN&C Rapid Development Laboratory 01 May 1996

Page 3

Figure 2. The Design Team Concept

3.0 The JSC GN&C Rapid Development Laboratory

The GN&C RDL is a JSC on-site resource dedicated to exploring, evaluating and applying
new technologies and processes for flight software and simulation development, integration
and testing. A variety of tools are available.

The use of advanced software development tools is central to the RDL approach to applica-
tion development. An important tool currently in use in the GN&C RDL is Matrixx, a COTS
toolset sold by Integrated Systems Inc. (ISI), which provides an integrated environment in
which to perform requirements analysis and application development, including design, code,
test, and automated documentation, for the entire development cycle. This is a graphical soft-
ware tool which allows the user to develop data flow block diagrams of the desired system
using available primitives from a palette. Major capabilities include Xmath, SystemBuild,
AutoCode, and DocumentIt, which are described briefly below.

Xmath - Matrixx tool for design and analysis of control systems, simulations, and numerical
calculations

AFMD GN&C Rapid Development Laboratory Processes: Historical Perspective TM-960030-03 Enclosure
Section 3.0 The JSC GN&C Rapid Development Laboratory 01 May 1996

Page 4

SystemBuild - Matrixx graphical interface tool supporting system design from data flow
block diagrams

AutoCode - Matrixx tool for translating SystemBuild block diagrams into Ada or C source
code

DocumentIt - Matrixx tool for automated documentation and debugging support for
FrameMaker, Interleaf, and ASCII environments

Other important tools for advanced software development in the GN&C RDL include MatLab,
a technical computing environment for high performance numeric computation and visualiza-
tion integrating numerical analysis, matrix computation, signal processing, and graphics; and
ASDS (Advanced Simulation Development System), a generic trajectory and ancillary data
GN&C/Propulsion simulation tool featuring extensive libraries of engineering models, utilities,
and processes. MatLab is a COTS product marketed by MathWorks. ASDS was developed
by McDonnell Douglas, the initial version under NASA funding.

A summary of the principal tools available in the GN&C RDL is found in tables 1 and 2 below.

Table 1. Software Tools in the RDL

Matrixx Rapid model development, control system design & analysis,
code generation, simulation

MatLab Engineering analysis tool

ASDS Advanced Simulation Development System

SprocLab Digital Signal Processing-based real-time development system

XILINK Field Programmable Gate Array program development

ViewLogic Graphic User Interface for Electronics CAD programs

ORCAD Graphic User Interface for Electronics CAD programs

LabWindows DOS-based device control, data acquisition and display

LabView Window-based device control, data acquisition and display

Table 2. Hardware Tools in the RDL

3-Axis and 2-Axis rate tables

GPS (Global Positioning System) signal generator

Workstations: Sun, HP, PC, MacIntosh, SGI

Real-Time platforms: AC-100, DSPACE, STaTS, MATE,
MDM, VME chassis with VxWorks

Mock-ups: Soyuz, Orbiter Aft Flight Deck

AFMD GN&C Rapid Development Laboratory Processes: Historical Perspective TM-960030-03 Enclosure
Section 4.0 The Soyuz Vehicle Simulation 01 May 1996

Page 5

4.0 The Soyuz Vehicle Simulation

The goal of this project was to create a simulation environment for testing the Soyuz motion
control system and related flight software with modifications to serve as a rescue vehicle for
Space Station Freedom. This required simulation of vehicle characteristics and command
responses for a variety of landing scenarios.

The existing flight software for the Soyuz descent module assumed the use of a large pri-
mary landing site in the former Soviet Union. At the time this project was undertaken, require-
ments called for the ability to land the vehicle under more accurate control and at other
locations, including the United States and Australia. The project was terminated when these
requirements were eliminated from the newly designed International Space Station.

The project was planned to include four major software deliveries, with increasing capability
at each phase. Phase 0 included minimal functionality and primarily was a test of interfaces,
system connectivity and communications. In phase 1, functionality of software modules was
introduced, but was based on low fidelity 3DOF models using the characteristics of a familiar
vehicle (Apollo). In Phase 2, simulation functions were rewritten to represent the Soyuz vehi-
cle and flight software to the extent that the data was available. A physical mock-up of the
descent module and some hardware performance data, such as thruster locations, mass
properties and tank sizes, were available during phase 2 development, but knowledge of the
flight software was still minimal. The Phase 2 simulation was validated by inviting Russian
experts to “fly” the simulator and point out any obvious deficiencies or needed modifications.
Phase 3, which was not implemented, was planned as a fully functional high-fidelity simula-
tion.

This phased approach fit quite naturally with the project evolution, since it allowed progress
to continue in the absence of complete detailed data. It also supported plans to use the
project as a test for investigating the feasibility of evolutionary prototyping and the spiral
development methodology to develop GN&C flight software.

This was also an initial test of the use of advanced software development tools to develop
GN&C flight software.

The project ran from January 1993 through February 1994. Its results are documented in ref-
erences 6, 7, 8, 9,10 and 12 (section 9.0).

AFMD GN&C Rapid Development Laboratory Processes: Historical Perspective TM-960030-03 Enclosure
Section 5.0 Rapid Software Development Results and Lessons Learned 01 May 1996

Page 6

Figure 3. Soyuz Simulation Development Model

5.0 Rapid Software Development Results and Lessons Learned

The spiral development approach was effective for this project. By adopting the phased
approach, with increasing levels of fidelity, it was possible to begin making progress on the
project quickly, without having to wait for all data and information to be available. The early,
low fidelity, simulations helped identify system structure and interface problems early on
when they were easier to fix. The incremental deliveries created natural re-evaluation check-
points for the project. And by delivering fully functional, though not high fidelity, interim proto-
types a working simulation exists which could be shelved for potential future joint efforts with
the Russians.

External dependencies (waiting on information or results from sources outside the project
team) could still have strong effects on the project’s progress, but in this development para-
digm the team had more flexibility in responding to this type of problem. The team did note
that success in this approach to system development depends heavily on putting together a
small, well trained, diverse team. Customer involvement is crucial to evaluate prototypes
between evolutionary steps. In fact, in this instance, the early simulations facilitated the dis-
cussion with the domain experts (including Russian engineers) to get performance data.
Without an early prototype, the exchange of some important information would have been
less successful. Sufficient time must be allocated for team meetings, meetings with users,
demonstrations and evaluations of intermediate steps, and other communications-enhancing
activities.

The application of the Matrixx, SystemBuild and AutoCode tools were encouraging. The
project team was able to document indications of significant productivity improvements for
the coding phases of the project. (See Table 3 below.)

AFMD GN&C Rapid Development Laboratory Processes: Historical Perspective TM-960030-03 Enclosure
Section 6.0 Topics for Further Study 01 May 1996

Page 7

The use of these advanced software development tools did bring its own set of problems.
The tools were not mature, so discrepancies and idiosyncracies were frequently encoun-
tered. AutoCode-generated source was not always very efficient, and in some cases not
even correctly generated. A side effect is that test sequences may have different results
using SystemBuild and using the AutoCode source version of a system. Configuration man-
agement issues had not been effectively addressed in this environment. And the special
needs of large scale projects were not well addressed, especially with respect to integration
issues. The team investigated alternative COTS products, including MATLAB/SIMULINK
(from MathWorks), VAPS (from Virtual Prototypes, Inc.), and tools in development at Honey-
well, and concluded that Matrixx was the most mature product set available. Since that time,
the International Space Station (ISS) has used Matrixx to develop close to 60% of its soft-
ware, and this tool has improved significantly.

Considering the expected problems with the level of maturity of the tools at the time the
Soyuz simulation project was implemented and the learning curve associated with first time
application of the methodology and processes, the results of this project were considered to
be very encouraging. This was a sufficient “proof of concept”, leading to establishment of a
full-fledged Rapid Development Laboratory at JSC.

6.0 Topics for Further Study

With the Soyuz simulation project, the RDL team successfully applied the rapid development
paradigm to a GN&C project. They applied the spiral development model, early end-to-end
integration, evolving prototypes, and the core development team concept. They used esti-
mated productivity improvements as a metric to achieve “proof of concept”.

Now we will expand on this work. The objective of this RTOP is to define and document
generic reference processes for rapid development and integrated design and verification of

Table 3. Soyuz Simulation Phase 1 and 2 Metrics

Phase 1 Phase 2

Number of Superblocks 55 371

Number of SLOC 4102 25045

Estimated Total Staff-Hours 1830 7720

SLOC per staff-day (assumes re-use of Phase 1
code)

18 22

AFMD GN&C Rapid Development Laboratory Processes: Historical Perspective TM-960030-03 Enclosure
Section 7.0 Early Thoughts and Special Concerns 01 May 1996

Page 8

simulation and flight software. Furthermore, the RTOP will document the practical tailoring
and application of these standard processes to project work in the GN&C RDL.

Some approaches to accomplish this include looking into other tools and approaches, look-
ing for other examples of the concept, learning what kinds of development projects are ame-
nable to the various tools and approaches, investigating the results that other groups have
achieved, and expanding on what others have learned.

In the long term, there are many questions to consider (some of which may prove to be out-
side the scope of this RTOP). What other cutting edge approaches to system development
(besides prototyping and auto-code generation, and spiral development) have been studied?
Which of these methods have been tested? With what successes or failures, and under what
circumstances? In what directions is technology advancement likely to lead us? What
aspects of this technology have been proven to be useful in quality, dependable system
development?

Configuration management issues and practices are concerns, as well as quality assurance
and general software quality issues. There are issues to consider around industry and gov-
ernment standards, such as the Software Engineering Institute (SEI) CMM (Capability Matu-
rity Model) and ISO9000. Developing useful metrics must be a goal.

In the Soyuz project lessons learned, there was considerable emphasis on the need to con-
struct a small team of core experts to see the project through from start to finish. We will be
interested in the critical characteristics of such a project team. For example, to what extent is
the success of rapid software development projects dependent upon continuity or co-location
of staff? What management structures are preferred? What skills and knowledge are indica-
tors of success?

7.0 Early Thoughts and Special Concerns

Software development can be expensive and risky. If it were not, we would not, as a profes-
sion, be so driven to improve our methods. The classic goal is a methodology that produces
better, faster, cheaper, or some combination of these. We need to add to this list, less risky
and more flexible. Rapid prototyping development methodologies cannot make difficult prob-
lems easy. They cannot guarantee fast or cheap completion of software systems. This is not
a panacea. Rather, many of today’s system problems are so complex that advanced software
development approaches are necessary if we are to solve them in a timely, useful and cost
effective manner. Technology is advancing so quickly that a system that meets requirements
frozen at some historical moment may be obsolete before it is delivered. All indications are
that the complexity of the problems faced will continue to increase and exist in environments
of constant change, and thus may require these new methodologies if we are ever to suc-
cessfully solve them.

Some proven uses for software prototypes include:

AFMD GN&C Rapid Development Laboratory Processes: Historical Perspective TM-960030-03 Enclosure
Section 7.0 Early Thoughts and Special Concerns 01 May 1996

Page 9

• Mock-ups for selling or demonstrating an idea; these could be anywhere along a contin-
uum from storyboarding to minimally functional systems.

• Determine and develop system requirements; this could also involve scenario develop-
ment, to step a user through screens and actions, observe and record feedback, then
modify the prototype and scenario, repeating the cycle until a solid understanding of the
true system requirements is achieved. In this environment, the prototype does not itself
evolve to the system, but serves first as a strawman and later as concrete visible docu-
mentation of system requirements.

• Analysis and what-if scenarios; in this environment, it is possible to try out several
approaches and choose based on observations before making major commitments to sys-
tem development.

• Evolutionary system development; this is the context of the Soyuz simulation development
where, in the absence of full knowledge of the software requirements and hardware speci-
fications, system development can evolve to increasing levels of complexity and accuracy
as knowledge improves while serving to highlight system architecture problems and areas
that need attention early in the development cycle.

When using prototyping for evolutionary system development, some advantages may be:

• The end product may be more responsive to current user needs since: 1) users had input
into the process along the development cycle and 2) the product requirements evolve with
the product, rather than being fixed at some historic point of requirements definition

• The end product may match user expectations more closely. Detailed written requirements
specifications may be open to multiple interpretations. But by working together with evolu-
tionary versions of a system, customers and developers have ample opportunity to con-
verge on a common understanding of required system behavior.

• It may be possible to deliver the interim versions with some of the system functions work-
ing sufficiently to be useful. This allows users to begin getting some benefit from their
investment sooner in the system life cycle, provides improved opportunities for generating
user feedback in time to influence the system development, and provides an improved
sense of progress.

• The evolutionary nature of the development cycle may result in a more robust and flexible
system. It can continue to evolve and change with changes in the user environment.

• The process may control risk better than classic waterfall development methodologies,
since customers/users have chances to evaluate the product as it is being developed. This
gives better information to managers at project decision points and gives users chances to
see and document problems, discrepancies, and deficiencies early in the system life cycle.

• Interface issues, frequently a source of last minute difficulties, are addressed early in the
development cycle, often with the initial prototype.

When working in a rapid software development environment using evolutionary prototyping,
the development environment must evolve as well. Since this is a leading-edge technology
with rapidly evolving tools and techniques, this may imply an increased commitment to pur-

AFMD GN&C Rapid Development Laboratory Processes: Historical Perspective TM-960030-03 Enclosure
Section 8.0 RTOP Plans and Schedule 01 May 1996

Page 10

chasing new software tools, upgrading or replacing hardware, and investing in training
classes for staff members.

There may be some additional difficulties integrating this approach into the government con-
tracting environment or a business development cycle. We must look for ways to accurately
estimate costs and completion dates while using an approach that depends on beginning a
project before its endpoint is well defined. It will be especially important to devise metrics that
track project progress and that are supportive of the spiral development environment while
providing appropriate management feedback and accurate views of status.

Special attention must be paid to the question of scale. That is, are some approaches more
effective in small or large scale projects? In the Soyuz simulation project, team members
stressed the importance of a small tightly integrated team of experts. What implications does
this have on large scale projects? A large project implies large coordination and integration
efforts which exist regardless of the development methodology used. The methodologies
may not scale up, or may require different or additional tools or approaches.

8.0 RTOP Plans and Schedule

Five major tasks are planned. These are:

1. Survey and review contemporary government and commercial sector rapid development
processes.

2. Define and document draft guidelines for rapid software development technical, manage-
ment and quality processes.

3. Define and document process performance metrics for rapid software development.

4. Correlate the draft guidelines and metrics for rapid software development processes to the
Software Engineering Institute’s Capability Maturity Model and to ISO 9000 requirements.

5. Demonstrate the application of the draft guidelines for rapid software development pro-
cesses and metrics.

The work will be done as a joint project between NASA-JSC and the Jet Propulsion Labora-
tory (JPL). Tasks 1 and 2 are planned to be addressed in FY96, with deliverables for each.
These include a Rapid Development Lexicon, a Literature Survey, and draft of proposed
guidelines for rapid software development.

9.0 Related Documents
1. J.M. Ball & E.J. Riel, “Strategic Avionics Technology Program: Rapid Prototyping & Inte-

grated Design Application Studies, Final Report”; NAS9-18877, February 1995.

2. J.M. Ball, D.C. Weed & E.J. Riel, “Strategic Avionics Technology Program: Rapid Prototyp-
ing & Integrated Design Application Studies, White Paper, Rapid Development Process”;
NAS9-18877, February 1995.

AFMD GN&C Rapid Development Laboratory Processes: Historical Perspective TM-960030-03 Enclosure
Section 9.0 Related Documents 01 May 1996

Page 11

3. B.W. Boehm, “A Spiral Model of Software Development and Enhancement”, Tutorial: Soft-
ware Engineering Project Management (R.H. Thayer, ed.), Computer Society Press of the
IEEE, 1988, pp. 128-142.

4. B.W. Boehm, Software Engineering Economics, Prentice-Hall, 1981.

5. D. Pesek, “Rapid Development Lab Configuration Management Plan”; internal document,
October 1995.

6. Rapid Prototyping Simulation Development Team, “Soyuz ACRV Simulation Development
Progress Report, April-May 1993”; McDonnell Douglas TM-6.23.07-24; June 30, 1993.

7. Rapid Prototyping Simulation Development Team, “Soyuz ACRV Simulation Development
Lessons Learned Report”; McDonnell Douglas TM-0009-01 enclosure 1; January 28,
1994.

8. Rapid Prototyping Simulation Development Team, “Soyuz ACRV Simulation Development
Assurance and Test Report”; McDonnell Douglas TM-0009-01 enclosure 2; January 28,
1994

9. Rapid Prototyping Simulation Development Team, “Soyuz ACRV Simulation Development
Configuration Management Plan”; McDonnell Douglas TM-0009-01 enclosure 3; January
28, 1994

10.Rapid Prototyping Simulation Development Team, “Soyuz ACRV Simulation Development
Trip Report, Summary of Trip to MDA-Huntington Beach”; McDonnell Douglas TM-0009-
01 enclosure 4; January 28, 1994

11.J. Uhde & D. Weed, “Library Reuse in a Rapid Development Environment”; Proceedings
of the AIAA Conference on Computing & Aerospace X, March 28-30, 1995, San Antonio,
TX; pp. 521-530.

12.J. Uhde-Lacovara, D. Weed, B. McCleary, & R. Wood, “The Rapid Development Process
Applied to Soyuz Simulation Production”, internal document, 1994

Section RDL Configuration Management Plan
Rapid Development Lab

Configuration Management Plan

Prepared by:
Douglas Pesek
Senior Engineer at McDonnell Douglas-Houston Division
(713)244-4517
November 1996 Page 1

Section RDL Configuration Management Plan
Page 2 November 1996

Table of Contents
1.0 Introduction...5

1.1 Identification of Document..5

1.2 Scope of Document...5

1.3 Purpose and Objectives of Document ..5

1.4 Document Status and Schedule..5

1.5 Document Organization and Roll-Out ...6

2.0 Related Documentation..7

2.1 Parent Documents ..7

2.2 Applicable Documents ..7

2.3 Information Documents ..7

3.0 Configuration Management Process Overview...9

3.1 Review Board..9

3.2 Software Engineering Staff.. 10

3.3 End User Community ... 10

4.0 Configuration Control .. 11

4.1 Configuration Control Responsibilities .. 11

4.1.1 Project Manager (PM) .. 11

4.1.2 Project Software Manager (PSM).. 11

4.1.3 Software Configuration Management (SCM) Group.................................. 11

4.1.4 Software Review Boards (CCB) .. 11
4.1.4.1 Current Status .. 12
4.1.4.2 Action Item Review .. 12
4.1.4.3 Change Request/Discrepancy Report Review 12
4.1.4.4 User Suggestions... 12
4.1.4.5 Delivery Schedule .. 13

4.2 Product Delivery and Configuration Identification 13

4.2.1 Version Description .. 13

4.3 Configuration Change Control .. 13

4.3.1 Software Configuration Control... 13

4.3.2 Incremental Integration and Testing Process... 14

4.3.3 Version Upgrade Process... 14

4.3.4 Documentation Process ... 14
4.3.4.1 Formulation Manual.. 14
4.3.4.2 User’s Manual ... 14
4.3.4.3 Programmer’s Manual ... 14

4.3.5 Mission Data Acquisition .. 14

4.4 Configuration Status Accounting .. 15
November 1996 Page 3

Section RDL Configuration Management Plan
5.0 RDL Process Descriptions...17

5.1 Software Configuration Control Process ..19

5.1.1 Overview of the change process ...19

5.1.2 Description of files ..20

5.1.3 Instructions for checking out Source Code ..21
5.1.3.1 Checking out source code ..21
5.1.3.2 Checking in source code ..21

5.1.4 Process for adding or modifying entries in report forms21

5.1.5 Process for generating status reports...22
5.1.5.1 RDL project bi-weekly test status report ...22
5.1.5.2 RDL project test report...23

5.1.6 Allowable entries and definitions for Status and Priority23

5.1.7 Process of archiving forms for a version release24

5.2 Incremental Integration and Testing Process ...25

5.2.1 Build Process Preparation ...25

5.2.2 Normal Build Process: Code and Executable Upgrading...........................25

5.2.3 Normal Build Process: Verification...26

5.2.4 Abnormal Build Process: Corrective Action..26

5.3 Version Upgrade Process ...27

5.3.1 Version Baseline..27

5.3.2 New Development Version Creation ...27

5.4 Product Delivery Process...29

5.4.1 Version Description ...29

5.5 Documentation Process...31

5.5.1 Formulation Manual ...31

5.5.2 User’s Manual ...31

5.5.3 Programmer’s Manual ...32

5.6 Mission Data Acquisition Process..33

6.0 Acronyms and Abbreviations ..35

7.0 Glossary...37

8.0 Appendices ..41

8.1 GITF Processes ...43

8.2 GITF Staffing ..45

8.3 RDL Deliveries ..47

8.3.1 Product delivery process..47
Page 4 November 1996

RDL Configuration Management Plan

1.0 Introduction

1.1 Identification of Document

The RDL Configuration Management Plan document contains a description of the
software configuration management procedures and standards used for Rapid
Development Lab (RDL) software products. This document conforms to NASA
Software Documentation Standard, Software Engineering Program, NASA-STD-
2100-91; specifically, NASA-DID-M600. This document was tailored after the MDA
- Houston Division Software Configuration Management Guidelines document.

1.2 Scope of Document

This software configuration management plan was developed specifically for use on
the RDL projects but may be adapted for use on other software projects.

1.3 Purpose and Objectives of Document

The purpose of the RDL Configuration Management Plan is to describe the software
configuration management processes and standards that will be used to manage
the RDL projects. These processes will define the framework for how changes to the
products are controlled, how changes are managed, and how these changes are
released. The RDL CCB will be responsible for maintaining and documenting all
processes. The RDL configuration management processes are:

• Configuration Control

• Incremental Integration and Testing

• Version Upgrades

• Product Delivery

• Documentation

• Mission Data Acquisition

Included in 8.1 “GITF Processes” is a list of all the GITF processes with a brief
description of each process.

1.4 Document Status and Schedule

This document is the initial release of the RDL Configuration Management Plan as
a unique document. Revisions of this document will be released when significant
changes are made to the processes contained herein. The appendices contain
information that will be dynamic and will be updated as needed.
November 1996 Page 5

Section 1.0 Introduction RDL Configuration Management Plan
1.5 Document Organization and Roll-Out

This document is organized into 10 sections as follows:

• Section 1 identifies this document, defines the scope and purpose, presents
status, and provides a brief description of each major section within this
document.

• Section 2 lists references, related documents, and other applicable documents.

• Section 3 provides an overview of the configuration management process

• Section 4 describes the activities to be performed by the Configuration Control
Board and associated members.

• Sections 5 includes a description of each RDL process.

• Sections 6 provides definitions of abbreviations and acronyms.

• Sections 7 is a glossary of terms.

• Sections 8 includes appendices that provide up-to-date information regarding
configuration status and staffing, version releases, and other dynamic data.
Page 6 November 1996

R a p i d D e v e l o p m e n t L a b

2.0 Related Documentation

Other documents of importance are identified in this section.

2.1 Parent Documents

The following document is the parent from which this document’s scope and
content derive:

None.

2.2 Applicable Documents

The following documents are referenced herein and are directly applicable to this
volume:

1. MDA-W, "Software Engineering Process Manual", Version 4.0, TBD.

2. NASA-JSC, "NASA Software Documention Standard: Software Engineering Pro-
gram", NASA-STD-2100-91, 29 July 1991.

3. MDA-HD, "Houston Division Software Configuration Management Guidelines",
TBD

2.3 Information Documents

The following documents, although not directly applicable, amplify or clarify the
information presented in this volume, and are not binding:

1. SEI, "Key Practices of the Capability Maturity Model", Version 1.1, CMU/SEI-
93-TR-25, February 1993.
November 1996 Page 7

Section 2.0 Related Documentation RDL Configuration Management Plan
Page 8 November 1996

R a p i d D e v e l o p m e n t L a b

3.0 Configuration Management Process Overview

Software Configuration Management (SCM) activities include configuration
identification, configuration control, and configuration status accounting.

Within the RDL project, many levels of configuration control are implemented to
control various software products at various stages of development. Configuration
control, at some level, is exercised over all final and interim products throughout
the development cycle. The lowest levels of control are the responsibility of the
engineers who are developing the product. At planned stages, the engineers turn
the products over to the Software Quality Assurance (SQA) Group for verification of
completeness and traceability, and to the SCM Group for control. When under the
control of the SCM Group, products can be modified only after an evaluation of the
system and project impacts of the proposed changes. The engineers, SQA Group,
and the SCM Group exercise engineering control over products that are not part of
a customer baseline and over products that are part of a customer baseline prior to
establishment of that baseline. Once the customer approved baseline is
established, procedures approved by the customer are followed to control changes
to the baselined products.

A review board process is used to evaluate and disposition proposed changes to
software products that have been put under the control of the SCM Group. The
SCM Group, SQA Group, Project Manager (PM), Project Software Manager (PSM),
review board, and Software Engineering Staff (SES) are responsible for fulfilling the
requirements of the SCM function.

The configuration management process is concerned with the development of
procedures and standards for managing an evolving software system. It is
specifically concerned with change: how to control change, how to manage
software systems which have been subject to change, and how to release these
changed software systems to the users.

The product management, SCM, SES, SQA, and end users all participate in the
flow of RDL products and information. Due to the size of the RDL projects, the
SCM, SES, and SQA group functions are often performed by the same
individual(s). Included in 8.2 “GITF Staffing” is a table of all members of the RDL
team with a checklist indicating each member’s role.

Change Requests (CR) and Discrepancy Reports (DR) are the official links between
the product end users, the SES, and the specific project review boards. All requests
must be reviewed and accepted by the appropriate product review board before
being implemented into a released product. Implementation of any CR should be
accompanied by documentation providing direct traceability for the changes made.

3.1 Review Board

The RDL project will have a product review board (hereinafter also referred to as
the CCB - Configuration Control Board). The CCB, a forum created to direct the
software development process, is populated by members of product management
November 1996 Page 9

Section 3.0 Configuration Management Process Overview RDL Configuration Management Plan
(PM and PSM), the SCM Group, the SQA Group, the SES, and the end user
community. The board meetings, which take place periodically, are the central
platform for disseminating information, approving, prioritizing, and assigning
software changes, and distributing products.

3.2 Software Engineering Staff

The Software Engineering Staff (hereinafter also referred to as developers) of RDL
software are those designated to implement changes to the source code in response
to inputs made by the product community through the CCB. These developers are
responsible for attending the CCB meetings where CRs are prioritized and can be
assigned to a developer. Once assigned a CR, the developer is responsible for the
implementation of the requested change to the satisfaction of the author of the CR.
If there are problems with the implementation of the requirements as requested by
the CR author, the developer will contact the author and negotiate the difficulties.
If, as a result, the substance of the CR changes, the new requirements should be
reported to the CCB for approval and recording.

When changing code, the developer must follow defined procedures established for
the specific software product. These procedures will assure traceability and
recoverability of source code changes. In addition, the developer is required to
produce a Change Action (CA) which records the changes made while
implementing a CR and the affected source code modules.

While updating existing code or creating new code, developers are required to
adhere to the standards and guidelines.

Developers also meet independently of the CCB to discuss schedules, assign CRs,
and discuss ways to improve the quality and maintainability of the source code.

All developers for a software product must be recognized and approved by the
product CCB. Only developers approved for work on a product may make changes
to the baseline source code for that product.

3.3 End User Community

In addition to receiving the final software product, the product user community
should take an active role in defining the requirements for the ongoing software
development task. Change requests are drafted by users to define desired
enhancements and corrections to the product. All change requests are presented to
the CCB for approval and prioritization. The implementation of any change request
must be approved by the author (e.g., signed off) before the request for the change
can be considered closed.

The user community is encouraged to attend the CCB meetings and is invited to
participate in the approval and prioritization process. Users can discuss any
product related problems or concerns at the CCB. Specific items can be added to
the CCB agenda by contacting the CCB Chair.
Page 10 November 1996

R a p i d D e v e l o p m e n t L a b

4.0 Configuration Control

4.1 Configuration Control Responsibilities

The purpose of this section is to identify and describe the activities to be performed
by the configuration control staff.

The RDL project has individuals or groups designated to perform the duties and
accept the responsibilities of the software project personnel identified in the
following sections. Included in 8.2 “GITF Staffing” is a table of the engineers
assigned to perform the functions described below.

4.1.1 Project Manager (PM)

The project manager has total business responsibility for the project and is
ultimately responsible to the customer.

4.1.2 Project Software Manager (PSM)

The project software manager has total responsibility for all the software activities
of the project. The PM deals with the PSM regarding all software commitments. The
PSM has control of all software development resources or has a significant input
into the use and control of shared development resources.

4.1.3 Software Configuration Management (SCM) Group

The SCM Group, all engineers performing specific SCM tasks, are members of the
Engineering Staff who have been assigned SCM responsibility by the PSM. Most of
the software engineers perform the SCM activity at lower levels of configuration
control for the products they are developing. However, the SCM Group engineers
provide engineering control for the products forwarded to them by the software
developers.

4.1.4 Software Review Boards (CCB)

The Configuration Control Board (CCB) is a software review board populated by
members of management (PM and PSM), the SCM Group, the SQA Group, the
Engineering Staff, and the end user community of a specific product. The CCB
meets periodically to exchange information, approve, prioritize, and assign
software changes, and distribute products. No changes to products, versions of
products, or distribution of products will be made without the knowledge and
approval of one of the specific product’s review boards.

The CCB is responsible for managing all RDL processes associated with product
delivery and configuration control.
November 1996 Page 11

Section 4.0 Configuration Control RDL Configuration Management Plan
The CCB chair is responsible for establishing the CCB agenda and leading the CCB
meeting.

The CCB secretary is responsible for reserving a location for the meeting,
distribution of CCB meeting notices, maintaining a current distribution list,
recording and distributing CCB meeting minutes. The distribution for the CCB
includes the full community of users, developers, and management.

The CCB data base administrator is responsible for collecting and organizing all
the change request materials required for the CCB meetings. This includes the
collecting of paper and electronic CR forms, verifying that the forms meet the
minimum submittal requirements, adding the new requests to the official data
base, generating change request status reports, and editing all change forms to
reflect the decisions of the CCB. A historical record of every CR for a given product
is maintained by the CCB data base administrator.

The CCB meeting agenda should contain a detailed list of items to be discussed
during the meeting. All attendees should be provided with handouts containing
any information relevant to the agenda topics as well as a change request report
that details the current status of all the active change requests in the official
database.

The CCB agenda should cover, but not be limited to, the items defined in the
following sections.

4.1.4.1 Current Status

The current status portion of the CCB meeting contains general announcements,
software and/or documentation release briefing, answering questions raised at
previous meetings, and other general business discussion. Included in the
appendices is up-to-date information regarding configuration status including
staffing, version releases, process owners and other dynamic data.

4.1.4.2 Action Item Review

The CCB will review the status of action items, especially those submitted since the
previous meeting. Approval, prioritization, assignment, withdrawal, and closing of
action items may take place at this time. A list of all action items is included in the
appendices.

4.1.4.3 Change Request/Discrepancy Report Review

The CCB should review the status of change requests and discrepancy reports,
especially those submitted since the previous meeting. Approval, prioritization,
assignment, withdrawal, and closing of change requests and discrepancy reports
may take place at this time. Lists of all change requests and discrepancy reports
are included in the appendices.

4.1.4.4 User Suggestions

This portion of the CCB is an open floor discussion where anyone can discuss
problems with the software, ask questions about processes, or make suggestions
for improvement.
Page 12 November 1996

Section 4.0 Configuration Control RDL Configuration Management Plan
4.1.4.5 Delivery Schedule

The delivery schedule portion of the CCB meeting announces the current schedule
for the next product deliveries. Any delays or adjustments to this schedule will be
discussed at this time.

4.2 Product Delivery and Configuration Identification

The RDL product is identified by the product name and a version identifier. This
combination of name and version identifies a unique configuration of the software
product. Associated documentation will refer to this unique configuration using
this configuration identification. Version identifiers indicate the chronological order
of product releases. The procedures used for product delivery and configuration
identification are described in detail in 5.4 “Product Delivery Process”.

4.2.1 Version Description

The Version Release Document provides a precise description of the particular
version of the software being released. This description includes the requirements
and design applicable to this version, and an exact description of the product
contents. This document, which is published by the software engineers or an
associated support group, accompanies every RDL software product delivery. For
each new release, this document also provides information on the status of
changes since previous releases. If a software product with an existing User’s
Guide is released without an updated User’s Guide, the associated Version
Description will contain detailed descriptions on how to use all new and enhanced
features.

4.3 Configuration Change Control

The RDL project has established configuration control processes for all products,
software, data, and documentation.

4.3.1 Software Configuration Control

The RDL project uses the Unix directory structure to support software
configuration control and is described in detail in 5.1 “Software Configuration
Control Process”. This process meets the following requirements:

1. All source code modules for each delivered product are recoverable.

2. Incremental changes to source code are identifiable, recoverable, and traceable
to the initiating requirements.

3. Security/recoverability of the source code can not be compromised by persons
outside the approved software engineering community.

All changes to RDL products are initiated by the submission of a CR or DR to the
appropriate CCB. A CR/DR can be submitted by any user, manager, or developer
to request a change, a problem fix, or an enhancement to the existing software
products.
November 1996 Page 13

Section 4.0 Configuration Control RDL Configuration Management Plan
4.3.2 Incremental Integration and Testing Process

The RDL project has an established process for incrementally building new
versions of the products. This process provides the mechanism for incrementally
implementing CR’s and DR’s in a controlled fashion. Several builds will be
performed between version releases. This process is described in detail in 5.2
“Incremental Integration and Testing Process”.

4.3.3 Version Upgrade Process

The RDL project has an established process for upgrading and documenting new
versions. This process is described in detail in 5.3 “Version Upgrade Process”.

4.3.4 Documentation Process

The RDL has an established process for updating all RDL documentation. This
process includes auto-generation of portions of this documentation. This process is
described in detail in 5.5 “Documentation Process”

4.3.4.1 Formulation Manual

The Formulation Manual describes or derives the algorithm implemented in each of
the models in software products. The terms model and package are used
interchangeably in this document to mean a group of related functions used to
perform a task. Assumptions and limitations of the formulations are discussed as
completely as possible. References are included to provide the reader with
additional background information and/or a more complete derivation of the
algorithm. Updates to this document are only required when changes to the
existing tools and algorithms warrant republication.

4.3.4.2 User’s Manual

The User’s Manual provides end users (rather than system operator or
administrators) with instructions explaining how to utilize the software effectively.
Republication of the User’s Guide is appropriate for each product version release;
however, user information for incremental releases (releases containing bug fixes
and few, if any, enhancements) of software products can be supported by a
combination of an existing User’s Guide with a new Version Release Document for
the given incremental release. Portions of this document are auto-generated using
processors provided with all RDL products and tools.

4.3.4.3 Programmer’s Manual

The Programmer’s Manual describes the philosophy behind the program, explains
its architecture, and specifies the procedures necessary to maintain and modify
the program.

4.3.5 Mission Data Acquisition

The RDL project has an established process for acquiring mission data required to
execute simulations. This process is described in detail in 5.6 “Mission Data
Acquisition Process”.
Page 14 November 1996

Section 4.0 Configuration Control RDL Configuration Management Plan
4.4 Configuration Status Accounting

The appendices of this document will provide up-to-date information regarding
configuration status including staffing, version releases, process owners and other
dynamic data for the GITF project.
November 1996 Page 15

Section 4.0 Configuration Control RDL Configuration Management Plan
Page 16 November 1996

R a p i d D e v e l o p m e n t L a b

5.0 RDL Process Descriptions

This chapter describes each process in detail and/or references additional
materials which contain the necessary information. The processes described
herein are:

• software configuration control

• incremental integration

• version upgrade

• product delivery

• documentation

• mission data acquisition
November 1996 Page 17

Section 5.0 RDL Process Descriptions RDL Configuration Management Plan
Page 18 November 1996

5.1 Software Configuration Control Process

This section provides a description of the RDL software configuration control
process used to manage all changes to RDL projects. The CCB maintains a list of
all Change Requests (CR), Discrepancy Reports (DR), Change Actions (CA), Action
Items (AI), and a Wish List (WL) in the ~rdlog/ccb directory. This document
describes the process for implementing changes to all project software, processors,
data, documentation, and processes. The responsibilities of the CCB, developer,
and end users are described.

Included in this document are:

• Overview of the change process

• Description of files

• Instructions for checking out source code

• Process for adding or modifying entries in report forms

• Process for generating status reports

• Instructions for users to submit new entries

• Instructions for filling out change action forms

• Allowable entries and definitions for Status and Priority

• Process of archiving forms for a version release

5.1.1 Overview of the change process

The following steps shall be performed to implement a change to RDL products.

1. User/Developer/CCB member (i.e. requestor) fills out the Master Problem
Report Data Base.template describing the change in detail.

2. Requestor brings a copy of the form to a CCB meeting (see 5.1.6 “Allowable
entries and definitions for Status and Priority”).

3. The CCB decides to accept or decline the change request. If the request is
accepted the CCB will:

a. Assign priority.

b. Determine which version the change will be applied to.

c. If the change is to be applied to the next release, then a developer will be
assigned and the CR will be put into the CR form; otherwise the CR will be
placed in the Wish List form and scheduled to be worked at a later time.

4. The developer will design and test the modifications required to close the
change request:

a. The developer will research the change request to determine the extent of
modification.

b. If the modification is complicated or if there are difficult design decisions,
the developer may ask the CCB to provide direction.

c. The developer will open a Change Action form to record the modifications
made.

d. The developer will use a directory copied from ~rdlog/version_X respectively
in which to perform their code changes.
November 1996 Page 19

Section RDL Configuration Management Plan
e. The developer will check out (see 5.1.3 “Instructions for checking out
Source Code”) all files that need to be modified. If a file is checked out
already, the developer will bring this issue to the CCB and the CCB will
assess the priority of the changes.

f. The developer will implement all changes, perform unit testing, schedule
and have peer reviews performed, and determine integrated verification
requirements.

g. The developer will bring the completed Change Action form to the CCB
meeting for review.

5. The CCB will review the developers change action and decide to approve closing
the request or to assign additional work. If the request is approved then:

a. The CCB will determine into which build the change will be implemented.

b. The developer will check in the modifications into the appropriate version
(The CR/DR number will be supplied to the change using inline
documentation or TEXT blocks).

c. The developer will supply the completed Change Action form to the Master
Data Base directory.

d. The developer will supply one hard-copy of the final CR/DR and the Change
Action forms to the CCB/builder to be filed in the project Closed Reports
Notebook.

6. The CCB/builder will build the version with these changes and perform the
integration testing specified in the Change Action form.

a. The CCB/builder will review with the developers results of those test cases
which were identified in the Change Action form to have differences.

b. The CCB/builder will notify the requestor that the change has been
implemented into the RDL product.

c. Finally, the CCB/builder will make a build sub-directory under the
Change_Action_Forms directory and will move the Change Action forms
which were included in the build to this sub-directory. The sub-directory
name will be of the form build.date where date is the date of the build (i.e.,
build.940725).

5.1.2 Description of files

The following files contain the actual forms for all RDL CRs, DRs, Action Items, and
Wish Lists:

• RDL Master Prob Rep Data Base

These forms contain the official list of CRs, DRs, Action Items, and Wish List Items
and must be approved for inclusion by the project CCB. The
Change_Request_Report is used to track all change requests for the current
version under development. The Discrepancy_Report is used to track all
discrepancy reports. The Action_Item_Report is used to track action items assigned
by the project CCB. The Wish_List_Report is used to track all ideas for
enhancements for future versions. These requests can be generated by the CCB,
developers, or users.

The following files contain a status report on each of the lists:

• RDL Master Prob Rep Data Base
Page 20 November 1996

Section RDL Configuration Management Plan
These files are generated from the report forms and are used by the CCB to track
the progress made on each of the entries. The data contained in these table is a
subset of the data contained in the actual forms.

A template for users to submit CR/Anomalies/DR/Action Items/Wish List is
provided:

• RDL Master Problem Data Base.template

Developers for CR’s and Anomalies/DR’s are required to complete a Change Action
(CA) form for each CR/Anomaly/DR. These forms are kept in the
Change_Action_Forms directory.

5.1.3 Instructions for checking out Source Code

The Unix directory structure and permissions is used to manage the configuration
control of all source code, data, and processors associated with RDL products. This
section documents how the checkout is used for RDL products.

5.1.3.1 Checking out source code

After a change has been approved by the CCB, the developer will check out all files
that need to be modified. The developer will only check out the files that he needs
to make the enhancement/correction. A sign up sheet located in the ~rdlog
directory for each version will be used to keep track which files are checked out of
the delivered code. Changes made by any one else to a checked out code will not be
accepted until the person signed up for the code has checked it back in. This will
ensure that no one else can make modifications to that file or make changes to that
file that would interfere with another developers work.

5.1.3.2 Checking in source code

When code is delta’ed back into configured directory for ~rdlog/version_X, the
developer must submit a CR or DR number and the files that have changed. The
files that are being replaced will be copied into a changed_code directory that
resides at the level of the source code. The name of the file will remain the same as
the original with the CR_# appended to it. This will ensure that at any time in
development the earlier test cases can be created.

5.1.4 Process for adding or modifying entries in report forms

Only members of the project CCB can add to or modify the official forms. The
process for adding or modifying an entry is the same for Action_Item_Report,
Change_Request_Report, Discrepancy_Report, and Wish_List_Future_Versions.

RDL project anomalies can be entered in the scratchpad file in the “RDL Problem
Reporting” folder. Any project test team member or their representative can open
an anomaly report.

The steps for adding a new entry or modifying an entry in a report are:

1. The FileMaker Pro based version of the data base is on line on a Macintosh at
Zone JSC B16 EG2, Server ADL MAC B16.

2. You will find what you need in the folder called "RDL Problem Reporting".

3. If you attempt to open the file "RDL Master Prob Rep Data Base", it will ask for
a password. If you do not enter a password, you will only be able to browse the
data base and print out selected records as any other user would. If you enter
November 1996 Page 21

Section RDL Configuration Management Plan
the password at the prompt, you will have the ability to do anything you wish in
terms of deletions, format changes, etc., so please be careful in this mode.

4. The other file titled "RDL Problem Reporting SCRATCHPAD", is a scratchpad on
which users may make candidate entries to be turned into permanent entries
at the discretion of the CCB. This is done by opening the file. It will ask for a
password; just ignore the request and click OK. Then type command-N to call
up a new record. Tab your way through the fields, answering the questions as
you go.

5. When you have completed the record, you can stop or you may repeat the pro-
cess to create more. When you are finally done with the new entries, you will
want to bring then into the master data base.

6. Here's how to do that: First, you will have opened the master and supplied the
password, since you are now writing, not merely browsing. Then, under the file
menu, select import. You will tell the system that you want to import the
records from the scratchpad file.

7. Once you have finished the import, type command-J to find all records, not just
the ones you just pulled in. At this point, you will probably have to change the
number that the program has assigned (at least if you want them to remain
sequential). You will also notice that the scratchpad form is slightly different
from the master data base in that several of the fields are suppressed. They are
there, they are just hidden because the users don't need them. You can see
that the tab key will cause you to cycle through these "phantom fields".

8. The system is set up to allow anyone to open the files (as read only), and it will
limit access to the data files to one person at a time. Also in the folder you will
find a Word and ASCII template of the report form.

9. Caution: If someone opens one of the files and just leaves it like that, this will
effectively immobilize the whole system and won't let anyone else seize control
of the specific file.

5.1.5 Process for generating status reports

5.1.5.1 RDL project bi-weekly test status report

Microsoft Word 5.0 test report summaries, as described below, will be requested
from the test sponsors for two week periods.

1) Information will contain, as a minimum, the test case numbers, objective,
success criteria, flight software used (hardware used if appropriate), and a
technical synopsis of the results of each test case that was run.

2) For successful tests, the synopsis will include, as a minimum, how well the
results agreed with the success criteria, which objectives were satisfied, and
whether the test was completed.

3) For parts of tests in which anomalies in the flight article were found, the
synopsis will include the RDL project DR number (or anomaly number if the DR
does not exist) and a brief quantitative description of which success criteria was
not met, which objectives were not satisfied, and the forward plan for flight article
discrepancies resolution.

4) For parts of tests in which laboratory discrepancies prevented successful
testing, the synopsis need only include the RDL project DR number (or the
Page 22 November 1996

Section RDL Configuration Management Plan

)

anomaly number if the DR number does not exist) and the information in “1”
above.

Test status reports from the various test summaries will be generated (condensed
as appropriate) from the information given above and circulated to program
management.

5.1.5.2 RDL project test report

Microsoft Word 5.0 test reports will be requested from the Testing Group at the
completion of a series of tests. The Testing Group, in coordination with the Test
Reporting Group, will determine what constitutes a “series” of tests. The Test
Reporting Group, in coordination with the Testing Group, will develop a test report
standard. The standard will be concurred upon by the ISS Program representative
and approved by the Program Management Group prior to use. The Test Reporting
Group will generate a schedule for test reports based on the information provided
by the Testing Group.

The Test Reporting Group will review test report schedules with the Testing Group
and arrive at report delivery dates that reflect ISS program needs and the RDL
project schedule capabilities.

Test reports will be reviewed for format and completeness by the Test Reporting
Group and distributed once release approval is obtained from the Program
Management Group. A library of released test reports will be maintained by the
Test Reporting Group in Microsoft Word 5.0 electronic form.

5.1.6 Allowable entries and definitions for Status and Priority

Table 1: Allowable entries and definitions for the status block

Entry Definition

Declined Proposed changed was withdrawn

Accepted Approved for implementation, no developer assigned, priority not set

On-Going Developer assigned, being worked

On-Hold Developer assigned, not being worked

Pending Code placed into a build but CR/DR left open because of missing CA item(s

Closed Item approved for closing by the CCB

Table 2: Allowable entries and definitions for the priority block

Entry Definition

High Will be worked as soon as possible

Medium Will be worked as resources become available

Low Will be worked in slack time
November 1996 Page 23

Section RDL Configuration Management Plan
5.1.7 Process of archiving forms for a version release

All AI, CR, DR, and CA forms must be archived when a new version of RDL is
released.

The steps for archiving these forms are:

1. cd ~”rdlog”/ccb

2. Create a new directory for storing the archived forms, naming the directory:
Version_X_Forms (where X is the version number).

3. Copy all files that are in the Report_Book (including the Report_Book file) from
~”rdlog”/ccb/Report_Book to the Version_X_Forms directory.

4. Create a Change_Action_Forms directory in the Version_X_Forms directory and
move all of the CA forms that were implemented into the new version from
~”rdlog”/ccb/Change_Action_Forms to this new directory.

5. Make sure that all CR and DR that were implemented into the new version have
been closed and that a CA exists for each CR and DR.

This completes the archiving process. Now the completed CR, DR and AI forms
must be removed from the ~”rdlog”/ccb table to prepare for the next version.

The steps for removing these forms are:

1. For each of the tables (Action_Item_Report, Change_Request_Report,
Discrepancy_Report) perform the following steps:

a. Open the table file.

b. Remove the forms that have been closed from the table by deleting the
pages containing the closed form.

c. On the first body page of the form change the paragraph type to be Page1.

d. Using the paragraph designer, modify Page definition for numbering.

2. The Wish_List_Future_Versions should be reviewed by the CCB to determine
which of the items should be moved to the CR list.

3. Create new status reports for each file (process described in this document).
Page 24 November 1996

Section RDL Configuration Management Plan
5.2 Incremental Integration and Testing Process

RDL projects have an established process for integrating and testing incremental
updates to new versions of the product. This process, hereafter referred to as the
build and build process, provides the mechanism for incrementally implementing
CRs and applying DR fixes in a controlled fashion. Several builds will be performed
between version releases. The person performing the build process will be referred
to as the version builder or simply the builder.

5.2.1 Build Process Preparation

The CCB first decides that a build update will be performed and which CRs and
DRs will be included in that build. The builder must prepare by identifying all the
source code and data files to be used in this particular build.

1. A build date must be selected that is indicative of the date the build will be ini-
tiated using a 6 character format (2 characters each) for year, month and date,
such as 940920 for September 20,1994. This mnemonic (940920) will be
referred to as the build_date.

a. The build_date in the code file ~”rdlog”/version_x/Readme_build is
updated to the new date.

2. Review the Change Action Form (CA) for each CR and DR to become familiar
with what is expected with this build. This is important especially when test
case results are expected to change and the builder must use this information
to assist in the build verification process.

3. The builder then updates the build report’s, Readme_build, initial section
denoting what CRs and DRs expect to have test case differences. This informa-
tion should be available in the respective CA based on the details that were
included in the CA supplied by the developer. This information is then used to
assist in the build verification process discussed later.

5.2.2 Normal Build Process: Code and Executable Upgrading

The build process can now be performed. There is currently no automated means
of configuration management in MatrixX, so documentation is crucial. The
following steps are used to perform the actual build process.

1. The builder, having checked out all the files he needs, modifies the code accord-
ingly.

2. When modifying a SuperBlock, document the changes using a Text Block. The
SuperBlock’s comment field is usually used for official program unit documen-
tation. Things to document are: the name, date, version, and other important
identification data. If appropriate, document the rationale for any changes that
may need it.

3. Manual configuration management introduces some specific cautions.

a. Always save SuperBlock changes in ASCII format.

b. Be careful not to document changes that have not been completed. We
want to avoid the situation where a builder thinks a change has been made
when it really hasn’t.

c. On the same line, remember to document all changes that have been com-
pleted.
November 1996 Page 25

Section RDL Configuration Management Plan
4. Warning: As a means of determining the changes between simulation files, the
unix command ‘diff’, is not sufficient. That is why detailed documentation of
changes is so important.

5. After all changes have been made, documentation is complete, and the simula-
tion is autocoded, the builder needs to compile and link the source code.

5.2.3 Normal Build Process: Verification

When there are no errors in the compilation and linking of the source code, and all
test cases have been executed the following steps must be completed.

1. The test case verification process by reviewing the “.diff” output file of each test
case executed. Based on the review of the CA for each CR and DR discussed
earlier and now documented in the build report, the builder must have a work-
ing knowledge of what test cases should have differences and what degree of
difference expected.

2. Normally, the actual differences of each test case should match the expected
differences for that test case obtained through the review of the applicable CAs.
The builder should also review the computer timing usage for each test case to
determine if any test case(s) experienced a significant computer time usage
change. After reviewing all test case results, the builder should make any nec-
essary comments/remarks in the build report for future reference. Trajectory
plots of selected trajectory parameters are then generated for those test cases
having differences. A copy of these plots along with a copy of the final build
report is then filed for permanent retention.

5.2.4 Abnormal Build Process: Corrective Action

The build process which integrates the incremental code/data upgrades does not
always perform normally. Even though each individual developer has gone through
an extensive verification process for each CR and DR implementation, the final
build process integrates all changes at one time and possible conflicts between CR
and DR implementations can arise. Other problems can occur, whenever the build
process explained above does not finished successfully, the builder has to take the
necessary steps to identify the problem(s) and to make the necessary correction(s).

1. If minor code corrections are required. The builder should make the corrections
in the actual source code.

2. Another possible build problem experienced is one with data problems within
the test cases themselves. The builder should correct the data files having
problems.

If major code corrections are required, then the builder may have to make the code
corrections within the source code directory with the assistance of the developer.
Page 26 November 1996

Section RDL Configuration Management Plan
5.3 Version Upgrade Process

RDL projects have an established process for upgrading and documenting new
versions. This section describes the process of baselining the current version of the
project software (excluding validation testing) and creating a new version of the
software for continued development.

5.3.1 Version Baseline

Once the CCB has decided that the current project version meets the needs for a
particular milestone, that version must be baselined and a new development
version made available to the development community.

The deliverable (current) version of the software is prepared for baselining by
locking the software configuration files from the development community. This
baselined version is used for validation and testing, and when this is completed, is
ready for distribution to all customers.

5.3.2 New Development Version Creation

Once the current version of the software has been baselined, a new development
version is required for the processing of new Change Request and Discrepancy
Report corrections and modifications.

1. Write a CR that states to create a new version of project software. This CR
should be number Y.1 where Y is the new version number.

2. In directory ~”rdlog”, create a new directory structure which begins with
contents that are identical to the development version (baseline).

3. Edit the new version root (~”rdlog”/version_Y) Makefiles
Update items that might have changed in the Makefiles

4. Present results of the creation of the new version to the CCB. Review with the
CCB the following pieces of information:

a. any problems found during the new version creation process.

b. mission test cases that need to be deleted.

c. go/no-go recommendation for the first build in the new version.

5. Perform the version build (see 5.2 Incremental Integration and Testing
Process).

6. Verify the build (see 5.2 Incremental Integration and Testing Process).
There should be no differences between the new version (~”rdlog”/version_Y)
results when compared to the results from the previous, baselined version
(~”rdlog”/version_X) of RDL.

7. Present results to the CCB.

8. Unlock the permissions in the directories in the new version.

9. Announce the existence and readiness of the new version to the developer
community.
November 1996 Page 27

Section RDL Configuration Management Plan
Page 28 November 1996

Section RDL Configuration Management Plan
5.4 Product Delivery Process

RDL products are identified by the product name and a version identifier. This
combination of name and version distinguishes a unique configuration of the
software product. Associated documentation will refer to this unique configuration
using this configuration identification. Version identifiers indicate the
chronological order of product releases.

5.4.1 Version Description

The Version Release Document provides a precise description of the particular
version of the software being released. This description includes the requirements
and design applicable to this version, and an exact description of the product
contents. This document, which is published by the software engineers or an
associated support group, accompanies every RDL software product delivery. For
each new release, this document also provides information on the status of
changes since previous releases. If a software product with an existing User’s
Guide is released without an updated User’s Guide, the associated Version
Description will contain detailed descriptions on how to use all new and enhanced
features.

The product delivery process is described in detail in 8.3 “RDL Deliveries”.
November 1996 Page 29

Section RDL Configuration Management Plan
Page 30 November 1996

Section RDL Configuration Management Plan
5.5 Documentation Process

RDL projects have an established process for updating all associated
documentation. This process defines what documents need to be updated as
coding changes are implemented and what activities must be performed for a
version delivery.

When an RDL product coding change is made, the code developer is required to
identify all affected documents and update the appropriate text sections before the
coding change is considered closed. The updated sections are reviewed by a co-
worker for comprehensibility and completeness. The type of coding change
determines which documents need to be updated, and this is discussed in
subsequent sections.

The sections of a document may evolve as coding changes are implemented for the
next version release. All documents are then re-created at the version release to
incorporate all the changes. This includes assembling the sections of the document
into a book, updating section numbers and cross-references, creating the table of
contents, and printing the document. For the User’s Manual, this also includes
input, output, and list tables directly from RDL product code files.

5.5.1 Formulation Manual

The Formulation Manual describes or derives the algorithm implemented in each of
the models in the RDL products. The term model means a group of related
functions used to perform a task. Assumptions and limitations of the formulations
are discussed as completely as possible. References are included to provide the
reader with additional background information and/or a more complete derivation
of the algorithm.

This manual describes:

• The executive package used to control events and integration

• The various coordinate systems and reference times

• The computation of the time derivative of the vehicle state

• The environment models: atmosphere, gravity, and winds

• The vehicle models: aerodynamics, mass properties, propulsion, sensors,
and slosh

• Various utility functions including interpolation and spline fit routines

• The hardware configuration necessary to run the simulation

Updates to the Formulation Manual are required when a change is made to the
engineering or mathematical algorithms used by a model or a hardware
configuration change. For example, new aerodynamic equations or additional
inputs would require a change to the aerodynamics section of the Manual, but a
change in data values without a change in format or use would not require a
change to the Manual. The developer would document the actual equations used,
explaining the terms, and include explanatory figures, if necessary.

5.5.2 User’s Manual

The User’s Manual provides end users (rather than developers or administrators)
with instructions explaining how to execute the software effectively. The Manual
November 1996 Page 31

Section RDL Configuration Management Plan
provides information needed to enter appropriate data, assemble a simulation,
obtain output data, and configure necessary hardware.

The Manual is arranged by model packages, and each model package usually
includes an overview section, sample input, and an error control section. If
applicable, tables of inputs, and outputs follow for each package.

Updates to the User’s Manual are required when a change is made that affects
examples, error controls, inputs, or outputs. The developer would make
appropriate changes to any text (such as examples and error controls) when the
coding change is implemented but would not update any of the tables.

5.5.3 Programmer’s Manual

The Programmer’s Manual describes the philosophy behind the RDL program,
explains its architecture, and specifies the procedures necessary to maintain and
modify the program. It documents the development requirements (including
operating system and language requirements), documents the design concepts and
coding conventions used for program development, discusses the functional design
requirements for the program’s components, and explains the procedures and
tools used to maintain and modify the program.

Updates to the Manual are made when the program’s basic philosophy or
architecture are changed. For example, if the method for adding new derivatives
changed or if a new function was required for each model package, the developer
would document the new requirement in the Manual.
Page 32 November 1996

Section RDL Configuration Management Plan
5.6 Mission Data Acquisition Process

The Mission Data Acquisition Process (MDAP) is an important part of the RDL
maintenance. This process builds the flight-specific databases needed to support
flight verification and mission analysis using RDL products

Flight-specific data can come from a number of sources and in a variety of forms.
The purpose of the MDAP is to transform these different types of data into RDL
product input data with minimal manual intervention.

The steps in the MDAP are described extensively in the MDAP document (~”rdlog”/
ccb/MDAP/BOOK) due to their complexity. Basically, there are three parts to the
MDAP:

1. Gathering the input data

2. Executing the processors to generate RDL product data files

3. Verifying the results

Once all the input data have been obtained, a number of processors and scripts are
used to convert these data to RDL product mission-specific data files. Types of
output data files are I-loads, initialization file, mass properties, and propulsion.
These mission-specific data files are then added to an RDL master data file
template to create mission-specific test case master data files.

The verification of the MDAP results is performed by running a standard set of
mission-specific test cases and examining the results. Again, scripts are used to
automate the creation, execution, and plotting of the test cases. The user then
examines the test case output (text files and plot files) to ensure that the mission-
specific data got in correctly and that the test case ran correctly.
November 1996 Page 33

Section RDL Configuration Management Plan
Page 34 November 1996

R a p i d D e v e l o p m e n t L a b

6.0 Acronyms and Abbreviations

CA Change Action

CCB Configuration Control Board

CI Configuration Item

CMM Capability Maturity Model

CR Change Request

CRM Change Request Manager

CSCI Computer Software Configuration Item

DID Data Item Descriptions

DR Discrepancy Report

ECP Engineering Change Proposal

GITF Guidance, Navigation, & Control Test Facility

HD Houston Division

ISS International Space Station

JSC Johnson Space Center

MDA-W McDonnell Douglas Aerospace - West

NASA National Aeronautics and Space Administration

PM Project Manager

PSM Project Software Manager

RDL Rapid Development Lab

RDLOG Project Name

SA System Administration

SCCS Source Code Configuration System

SCM Software Configuration Management

SDR Software Discrepancy Report

SEI Software Engineering Institute

SEPG Software Engineering Process Group

SES Software Engineering Staff

SMAP Software Management and Assurance Program

SQA Software Quality Assurance

STS Space Transportation System

TM Transmittal Memo

VDD Verification Description Document
November 1996 Page 35

Section 6.0 Acronyms and Abbreviations RDL Configuration Management Plan
Page 36 November 1996

munity,
 meet
and

 treated

 and a

hange

d and

lf of the
 have

cy to a

ange to

ing to

anual
 in

dopted

hich
p-level
R a p i d D e v e l o p m e n t L a b

7.0 Glossary

Change Action (CA)
A form written by developers to describe the implementation of a change request.

Configuration Control Board (CCB)
A forum created to direct the software development process and populated by the user com
management, and the developers of each specific product. The board meetings, which
periodically, are the central platform for disseminating information, approving, prioritizing,
assigning software changes, and distributing products.

Configuration Item (CI)
An aggregation of hardware, software, or both, designated for configuration management and
as a single entity in the configuration management process.

Change Request (CR)
A form written by users or developers to describe either a discrepancy between the software
requirement, or a software enhancement to support a new requirement.

Change Request Manager (CRM)
An on-line, electronic application developed by the Robotic Systems Project which manages c
requests and developer change action reports.

Computer Software Configuration Item (CSCI)
A software specification item whose function and performance parameters must be define
controlled to achieve the overall end use function and performance.

developer’s forum
A product developer’s meeting attended by the lead developer, the CCB chair, and at least ha
developers. This forum is able to act with the power of the CCB for actions of high priority that
critical time constraints.

discrepancy (NRCA) report
A report defined by the NASA Software Documentation Standard used to state a discrepan
product or product specification.

Engineering Change Proposal (ECP)
A report defined by the NASA Software Documentation Standard used to state a suggested ch
a product. For HD purposes, this is equivalent to a CR.

formally controlled software
Software, deliverable to an external or internal customer, or any software significantly relat
acceptability of deliverable hardware or software items.

guidebook
A handbook of information; within the MDA-W software process documentation scheme, a m
with non-directive information, supporting compliance with directive information contained
company manuals and procedures.

NASA-STD-2100-91
This document describes the standard method of documenting software at NASA. It has been a
by HD as a standard set of software documentation guidelines and templates.

organization
A unit within a company or other entity (e.g., government agency or branch of service) within w
many projects are managed as a whole. All projects within an organization share a common to
November 1996 Page 37

Section 7.0 Glossary RDL Configuration Management Plan

SEPM

 place
 may

 to the
 within

 with
ment

 In most

o have
 SCM
, the
ftware

cess.

es.

s, and

n is to
has the

ocess
y or may

other
mote

version,
und
manager and common policies. The Houston Division is considered an organization within the
framework.

periodic
(1) Having periods or repeated cycles; (2) Occurring or appearing at regular intervals; (3) Taking
now and then: intermittent [Note: The time interval will meet the needs of the organization and
be lengthy.]

Project Manager (PM)
The individual having total business responsibility for a project and being ultimately responsible
customer. In most instances, this designation will be given to the appropriate E level manager
HD.

Project Software Manager (PSM)
The individual having total responsibility for all the software activities of a project. The PM deals
the PSM regarding all software commitments. The PSM has control of all software develop
resources or has a significant input into the use and control of shared development resources.
instances, this designation will be given to the appropriate F level manager within HD.

software baseline library
The contents of a repository for storing CIs and associated records.

Software Configuration Management (SCM) group
The SCM Group, all engineers performing specific SCM tasks, are typically part of the SES wh
been assigned SCM responsibility by the PSM. Most of the software engineers perform the
activity of lower levels of configuration control for the products they are developing; however
SCM Group engineers provide engineering control for the products forwarded to them by the so
developers.

Software Engineering Process Group (SEPG)
A group facilitating definition, maintenance, and improvement of the eternizations software pro
The HD SEPG was formerly known as the Software Process Improvement Team (SPIT).

Software Engineering Staff (SES)
All software technical personnel, other than the PSM, performing software development activiti

software product
The complete set, or any of the individual items of the set, of computer programs, procedure
associated documentation and data designated for delivery to a customer or end user.

software review board
A group of technical and management representatives and technical experts whose functio
evaluate, approve or disapprove, and coordinate proposed changes to configuration items,
following specific configuration control responsibilities.

software work product
Any artifact created as part of defining, maintaining, or following a software process, including pr
descriptions, plans, procedures, computer programs, and associated documentation, which ma
not be intended for delivery to a customer or end user.

system
A collection of components organized to accomplish a specific function or set of functions.

Unix
A computer operating system conceived in 1969 at AT&T’s Bell Labs that offers, among
features, file and record locking, user security, multi-tasking, electronic mail, networking, and re
file sharing.

Version Description Document (VDD)
A document describing the version of software to be released and changes from the previous
if applicable. The Houston Division standard template for this document is NASA-DID-P500 (fo
in NASA-STD-2100-91).
Page 38 November 1996

Section 7.0 Glossary RDL Configuration Management Plan

 under

nitor,
 drive/s.
walkthrough
An ad hoc team activity conducted by development peers to ensure a software product
development satisfies applicable requirements and design objectives.

workstation
A table-top sized mini-computer intended primarily for a single user. Equipped with a CPU, mo
keyboard, and memory (both static and dynamic), and can also support tape drive/s and hard
Workstations are usually part of a network.
November 1996 Page 39

Section 7.0 Glossary RDL Configuration Management Plan
Page 40 November 1996

R a p i d D e v e l o p m e n t L a b

8.0 Appendices
November 1996 Page 41

Section 8.0 Appendices RDL Configuration Management Plan
Page 42 November 1996

8.1 GITF Processes

This section describes the processes used for configuration management for the
GITF project and designates the process owner. The process owner is responsible
for maintaining the process and associated documentation.

TABLE 8-1 GITF Processes

Process Name Owner Description/Status of Documentation

Configuration Control Karen Frank Defines the process for modifying GITF code,
processes, databases, documentation, and
processors and defines the roles and respon-
sibilities of CCB members, developers and
users

Incremental
Integration and
Testing

Bruce Shulz Defines the process for incrementally imple-
menting modifications (builds) leading up to
a new version.

Version Upgrade John Craft Defines the process for upgrading GITF
products to a new version including verifica-
tion requirements and documentation
requirements.

Product Delivery Frank Weaver Defines the procedures followed to deliver
final GITF test reports to customers.

Inputs to this process includes all source
code identifiers to create the required exe-
cutables, as well as certification test case-
numbers to test the executables and all shell
script numbers required to reconfigure the
simulation.

Additionaly, test sponsors submit written
reports on the test objectives and results.
Reference is made to the information
above. These reports, once approved,
become the GITF formal “product delivery”

Documentation Jenny Wagenknecht Defines the process for maintaining all GITF
documentation including the process of
extracting input/output definitions from the
source code.

Mission Data
Acquisition

Teming Tse Defines the process for obtaining mission-
specific data including I-loads for all flight
modes, mission-specific data files and mas-
ter data files for each flight mode.
November 1996 Page 43

Section RDL Configuration Management Plan
Page 44 November 1996

8.2 GITF Staffing

This section documents the management and engineering staff for the GITF
project. Due to the staffing level of the GITF project, engineers supporting this
project are assign multiple duties and responsibilities.

.

TABLE 8-1 GITF Staffing

Engineer
Project

Manager
(PM)

Project
Software
Manager
(PSM)

Software
Configuration
Management

Group
(SCM)

Configuration
 Control
Board
(CCB)

Software
Engineering

Staff
(SES)

Software
Quality

Assurance
(SQA)

NASA Support

✔

✔

✔

✔

✔

✔

✔

✔

Contractor Support
November 1996 Page 45

Section RDL Configuration Management Plan
Page 46 November 1996

November 1996 Page 47

8.3 RDL Deliveries

This section documents the delivery process for all RDL products and to whom
products have been delivered. The table below shows the RDL version deliveries
that have been made to date.

8.3.1 Product delivery process

The steps needed for RDL product delivery are:

• All CRs and DRs need to be signed off on by the author of the report

• Customer must concur with the changes implemented

• All documentation must be completed

Table 3: RDL Deliveries

Config Description
Delivery

Date
Version

1

American Institude of Aeronautics and Astronautics

LIBRARY REUSE IN A RAPID DEVELOPMENT ENVIRONMENT

Jo Uhde Ph.D.
NASA Johnson Space Center

Houston, Texas 77058

Daniel Weed, Robert Gottlieb Ph.D., Douglas Neal
McDonnell Douglas Aerospace - Space Systems

13100 Space Center Boulevard.
Houston, Texas 77059

ABSTRACT

The Aeroscience and Flight Mechanics Division
(AFMD) at the National Aeronautics and Space
Administration-Johnson Space Center (NASA-JSC)
established a Rapid Development Laboratory (RDL) to
investigate and improve new “rapid development” software
production processes and refine the use of commercial, off-
the-shelf (COTS) tools. These tools and processes take an
avionics design project from initial inception through high
fidelity, real-time, hardware-in-the-loop (HIL) testing.

One central theme of a rapid development process is the
use and integration of a variety of COTS tools such as the
MATRIX X

® product family of Integrated Systems Inc. (ISI),
Santa Clara, CA, and the Advanced Simulation Development
System (ASDS), developed by NASA and McDonnell
Douglas Aerospace in Houston, TX (MDA-HD).

Reuse of MATRIXX
® and ASDS models is crucial to the

rapid development process. Unlike ASDS, which is
expressly designed to facilitate software reuse, MATRIXX

®

poses some unique problems not associated with reuse of
source code models.

This paper1 discusses the RDL MATRIXX
® libraries, as

well as the techniques for managing and documenting these
libraries. This paper also shows the methods used for
building simulations with the ASDS libraries, and provides
metrics to illustrate the amount of reuse for five complete
simulations. Combining ASDS libraries with MATRIXX

®

libraries is discussed.

1. Copyright 1995 by the American Institute of
Aeronautics and Astronautics, Inc. No copyright is
asserted in the United States under Title 17, U.S.
Code. The U.S. Government has a royalty-free li-
cense to exercise all rights under the copyright
claimed herein for government purposes. All other
rights are reserved by the copyright owner.

INTRODUCTION

In an effort to evaluate the rapid development process
and tools, AFMD created the Rapid Development
Laboratory. The RDL is a JSC on-site resource dedicated to
exploring and evaluating new technologies and processes for
flight software (FSW) and simulation development.
[Bordano, 1993]

The laboratory is a teaming effort between personnel
from NASA-JSC, Lockheed Engineering Services
Corporation (LESC) and MDA-HD. A cooperative
agreement allowed engineers at JSC to access a similar
facility at the McDonnell Douglas Aerospace site in
Huntington Beach, CA (MDA-HB), where the flight
software and simulations for the Delta Clipper (DC-X) were
developed.

The RDL is fine tuning a spiral, or incremental,
development process, wherein entire software and hardware
systems are integrated early in the development cycle. The
system level of fidelity increases through a series of
milestones toward the desired final state. This process has
been demonstrated to substantially increase productivity
over the life of a project compared to more traditional,
“waterfall” approaches.

The RDL team uses the MATRIXX
® product family

available from Integrated Systems Inc. (ISI), Santa Clara,
CA, to build entire simulations in block diagram form. The
Advanced Simulation Development System is used
separately or in conjunction with MATRIXX

® depending on
the simulation requirements.

Software Reuse and the Rapid Development Process

Simulation building in the past has been laborious and
expensive, both in development and maintenance.
Simulations were traditionally built to satisfy a unique set of
requirements without regard to reuse of any kind. Reuse of
these tools was typically an afterthought, leading to higher
development and maintenance costs. An improved software
development approach would combine extensive software

2
2

American Institude of Aeronautics and Astronautics

reuse with spiral development techniques and integrated
software engineering environment tools (SEE)

The spiral development approach produces prototype
real-time simulations and code concurrently with the
requirements development. Once the first working prototype
of the FSW is developed, real-time hardware-in-the-loop
(HIL) testing is initiated with representative flight hardware.

This process allows incompatibilities in the software
design, implementation, or in hardware selection to be
discovered early in the development. The cycle of concurrent
requirements and software development, and HIL testing is
repeated until acceptable software is produced. The spiral
development approach is one in which developers “build a
little and test a little”.

Crucial to the rapid development process, and one of the
main characteristics that makes it “rapid” is the reuse of
existing software, test cases, and documentation. ASDS was
specifically designed with reuse in mind. However, the full
suite of MATRIXX

® tools are primarily used as an integrated
software engineering environment. Such an integrated
toolset, in which one development environment is used from
initial requirements specification through final real-time
validation, is also important to rapid development projects.
But it is not as well suited to software reuse as more

traditional programming languages.

Overview of MATRIXX
®

MATRIX X
®/SystemBuild™ is a graphical software tool

which allows the user to develop data flow block diagrams of
the desired system using primitives available from a palette.
These elementary blocks are organized in groups called
“SuperBlocks” which become procedures or subtasks. These
SuperBlocks contain other hierarchically nested
SuperBlocks, which may be duplicated and shared among
other SuperBlocks.

Once the software data flow diagrams are built and linked
together, they are interactively tested in a non real-time
environment. Time and frequency domain analysis are also
performed interactively. An example of a block diagram is
given in Figure 1. This diagram illustrates the use of several
elementary blocks and imbedded SuperBlocks, which in this
case are library utilities.

Real-time code is automatically generated using the
AutoCode™ tool to produce source code from the block
diagram representation in C or Ada. Legacy code may be
imported into the model via User Code Blocks. The source
code is compiled and run on the AC-100™ real-time
computer to verify real-time and HIL performance.

V_Cross_Unit_R(1)

V_Cross_Unit_R(2)

V_Cross_Unit_R(3)

86
V x R

1
2
3

4
Unit_R_ECI(1)

5
Unit_R_ECI(2)

6
Unit_R_ECI(3)

UNI(1)

UNI(2)

UNI(3)

85
V_Unitize

Procedure

SUPER
BLOCK

1

2

3

Velocity_ECI(1)

Velocity_ECI(2)

Velocity_ECI(3)

15
Rel_or_Inertial

u1

u2

u3

y

1
2
3

13
RELVELSW

8
Velocity_ECI(1)

9
Velocity_ECI(2)

10
Velocity_ECI(3)

UnitZ_Cross_Unit_R(1)

UnitZ_Cross_Unit_R(2)

UnitZ_Cross_Unit_R(3)

251
UNITZ(1)

2
UNITZ(2)

3
UNITZ(3)

4
Unit_R_ECI(1)

5
Unit_R_ECI(2)

6
Unit_R_ECI(3)

Omega_Planet(1)

Omega_Planet(2)

Omega_Planet(3)

6
Scalar_Times_Vec

Procedure

SUPER
BLOCK

1

2

3

7
KWE

VRel_ECI(1)

VRel_ECI(2)

VRel_ECI(3)

16

1

2

3

8
Velocity_ECI(1)

9
Velocity_ECI(2)

10
Velocity_ECI(3)

RDOT

8
Alt_Rate

1
2
3

4
Unit_R_ECI(1)

5
Unit_R_ECI(2)

6
Unit_R_ECI(3)

LEQ

18
Grav_plus_Centrip_Accel

Y= (U1 - 1)*U2

12
GS

Adjusted_Total_Accel

34
Projected_Drag_Accel

Y= U1*(1 + (-U2/U3 - 2*U1/U4)*U5/2)

14
Total_Accel

15
HS

16
DT

72
Normalized_Vel

Y= U1/U2

11
VSAT

VSQ

26
Normalized_Vel_Sqd

 2
U

Velocity_Mag

12
V_Magnitude

Procedure

SUPER
BLOCK

1

2

3

SB_Apollo_Targeting_Traj_Param

This routine computes parameters needed by Apollo guidance

such as: velocity, altitude rate, and total acceleration.

7

8

9

1

5

4

6

2

3

 Figure 1 Example MATRIXx Block
Diagram

3
3

American Institude of Aeronautics and Astronautics

Overview of ASDS

The Advanced Simulation Development System (ASDS)
is a unique system in which a library of software parts has
been successfully reused, at all levels of complexity, in the
assembly of high-fidelity, large-scale simulations. Developed
under contract to NASA, ASDS was created expressly for
reuse. The simulations built to date are non-real-time
trajectory and vehicle simulations for government
customers, both civilian and military. ASDS was designed to
permit construction of any conceivable simulation, including
real-time.

Typically, fifty to ninety percent of an ASDS application
consists of reused parts from the ASDS libraries. ASDS
achieves significant reuse through a unique simulation
executive structure which implements the primary ASDS
strategy: all simulations are characterized by propagation
separated by discrete events. This strategy, along with
careful design of reusable and integrable parts, allows ASDS
users to easily and rapidly prototype high fidelity
simulations. The library contains an abundance of mature,
generic models, including environment models, vehicle
models, events, utilities, and primitives.

MATRIX X
® LIBRAR Y DEVELOPMENT AND USE

The pilot project of the RDL was a real-time six degree-
of-freedom (DOF) simulation of the Soyuz spacecraft when
used as the Crew Transfer Vehicle (CTV) for International
Space Station Alpha (ISSA). This project involved the
significant use of the MATRIXX

® product. [Uhde, 1994]
The main goal of the Soyuz/CTV simulation project was to
produce a real-time GN&C engineering simulator of the
Soyuz/CTV from the deorbit burn through touchdown.

The RDL team took a three phase approach to build the
simulation with corresponding versions. Phase 1 built a three
DOF simulation with relatively low fidelity models. This
allowed the team to learn the toolset and the rapid
development process. In Phase 2, the simulation was
upgraded to six DOF with substantially higher fidelity
models. Phases 1 and 2 used Apollo flight software models
and vehicle data, as the Soyuz data was unavailable. Phase 3
incorporated the highest fidelity models deemed necessary,
along with the available Soyuz flight software algorithms.

One of the goals of this project was to create a set of
libraries of reusable MATRIXX

® parts. These parts allow
future projects to leverage off of the Soyuz experience.

The team began by listing all “Utility” type routines
expected to be used in the simulation. These mainly featured
vector/matrix manipulation routines, coordinate
transformations, quaternion routines and orbital elements
utilities. Since the team had little previous experience with
MATRIX X

®, creating these utilities provided hands-on

experience in preparation for the more complicated task of
building the simulation. Coding standards were developed
during this time and applied to both the utilities and all other
simulation models.

A base library of utility functions, such as vector, matrix,
and quaternion manipulation procedures was built during
Phase 1. Each utility routine (SuperBlock) was fully unit
tested and documented. Confidence in the validated utilities
helped speed the debugging process when Version 1 of the
simulation was integrated.

The simulation size increased by a factor of six for Phase
2. All Phase 1 models were upgraded and many additional
models were developed. The entire simulation was
reorganized to enhance modularity. Both second and fourth
order Runge-Kutta plant model integrators were developed
to integrate state parameters. Several new environment
models were added. New mass properties, propulsion, and
aerodynamics models were developed and tested.

All models are data driven, which makes them as generic
as possible and thus suitable as utilities for future projects.
The mass properties model, for example, was designed to be
compatible with both the Apollo and Soyuz vehicles. The
mass properties of a vehicle are input as data on an element
by element basis. Dry elements use mass, Center-of-Gravity
(CG), and moment of inertia data, while the tank elements
require mass, CG, and tank ullage. The model uses these
data to compute the mass properties for each vehicle
component and combine for the entire vehicle.

Likewise, the propulsion model was designed for the
Soyuz vehicle, but since it is data driven, it can be used for
any vehicle with one variable thrust bi-propellent main
engine and up to 26 bi-propellent Reaction Control System
(RCS) jets on the Service Module and 8 mono-propellent
RCS jets on the Entry Module. The thrust magnitude,
location, direction, specific impulse, and mixture ratio are
required data inputs for each RCS jet.

The SuperBlocks considered candidates for library
routines were separated out at the end of Phase 2. The team
set up four different libraries: Vector/Matrix functions,
Quaternion functions, Orbital Elements functions, and a set
of Miscellaneous functions. The RDL team saved each
function as a separate SystemBuild file, and then all utilities
in a set were saved together. Saving the entire set together
facilitates loading the set into a developer’s simulation.

All utility SuperBlocks have unique names beginning
with “UTIL_”, so that a developer can tell immediately by
looking at his catalog, what utilities he has incorporated into
his model. RDL coding standards require a set of “Text
Blocks” unique to the utilities which indicate the date and
version number and other information. This information was
also put in a block within the utility as a comment.

4
4

American Institude of Aeronautics and Astronautics

Information placed in a block’s comment field appears in the
generated code and also in the “Detail Output”, whereas text
blocks only show in the block diagrams. Other than this
information, the utility coding standards match the other
SystemBuild standards developed by the lab.

After Phase 3 was completed, three new sets of utilities
were generated called Plant_Utils, FSW_Utils and
FHW_Utils. Plant_Utils is a set of library routines most
likely to be of interest to the Plant side of a simulation. These
include environment utilities such as gravity and atmosphere
models. The FSW_Utils library contains routines most likely
to be of interest to flight software designers such as
navigation and guidance routines. The FHW_Utils library
contains sensor and effector models. Some of these utilities
are actually templates which require modification by the
developer specific to an application, rather than stand alone
functions.

Brief summaries of currently available RDL utilities in
each library are given in the paragraphs that follow. Other
utilities are constantly being added. Contact the authors for
current information. All of these utilities were developed
with MATRIX X

® pre Version-4 and as such do not take
advantage of the new BlockScript block. Some could
probably be re-coded more efficiently using BlockScript.

The Vector Matrix Utility library

This set contains routines such as matrix multiplication,
matrix inversion, vector matrix multiplication, and vector
unitize and magnitude functions.

The Quaternion Utility Library

This set includes routines such as conversions from
transformation matrices to quaternions, normalization,
multiplication, rotation, and transformations. Both right and
left-handed functions are included.

The Orbital Element Utility Library

This set of routines includes a utility which determines
all of 13 orbital elements and utilities to determine individual
elements.

The Plant Utility Library

This library contains a variety of environmental models
such as atmosphere models, several gravity models, planet
relative velocity, bi-propellent engine models, and state
integration templates for second and fourth order Runge-
Kutta.

The Flight Software Utility Library

This library contains a variety of models often associated
with flight software for space vehicles. Included are some
navigation routines and state integrators, attitude

propagators, digital filters, and guidance algorithms.

The Sensors/Effectors Utility Library

This library currently contains an Inertial Measuring Unit
(IMU) model and an accelerometer model.

The Miscellaneous Utilities Library

This library contains functions such as timers,
stopwatches, modulo counters, Sign and Signum functions,
and some mathematical functions not provided by the
SystemBuild palette.

USE OF LIBRARIES WITH MATRIXX
®

MATRIX X
® functions well as an integrated software

engineering environment. But as a programming language, it
lacks many of the capabilities normally expected from other
languages such as C or Ada.

The primary concern is that an entire simulation resides
in only one file. An Ada or C programmer normally builds
separate logical packages and then links these together to
form the simulation. With MATRIXX

®, the developer must
have all blocks in one file before simulating, analyzing, or
generating code. This leads to problems with configuration
control and library management which are peculiar to
MATRIX X

®.

Programming languages ordinarily take advantage of
automated configuration management tools, such as SCCS to
allow developers to “check out” specific parts of a
simulation. This process inhibits other users from making
changes to the checked out portion until it is checked back
in. In this sense, libraries of reusable software parts function
much like libraries of books. But using libraries with
MATRIX X

® is akin to a book library with only one, rather
large book which may be replicated and modified
simultaneously by many users.

Once a utility routine is incorporated into a MATRIXX
®

simulation, it becomes a local part of that simulation and no
longer has a direct relationship to the original library routine.
With languages like C or Ada, the libraries are directly
linked in after compiling. This guarantees a change in a
library routine will get into the simulation. In MATRIXX

®,
changed library routines must be manually inserted into the
simulation much like change pages in a paper document.

Incorporating parts of a simulation modified by a
developer is a manual operation also, since the developer’s
file must be manually inserted. A team member, given the
role of “integrator”, manually selects which SuperBlocks to
load and which not to load.

The RDL team handles this problem by using a three tier
configuration control process shown in Figure 2. By
restricting who can make changes to a configuration

5
5

American Institude of Aeronautics and Astronautics

controlled version to only one person, the “integrator”, the
RDL team limits the possible sources of error. Each time a
change is made and verified by the QA group, the CM group
moves it into the configuration managed directories. Each
time the configuration controlled version changes, a
completely new version is created and date stamped.

This approach suits small projects, skunkworks-type
projects, and larger rapid development projects organized
around a small core team of experts. But for larger,
classically managed projects such as ISSA, these manual
techniques are not appropriate. The Space Station Program
needs to manage and combine possibly thousands of
SuperBlocks from multiple developers, over many years.

“File SuperBlocks” are a new capability available in
Version 4. They potentially simplify the creation of reusable
libraries of validated parts. Using File SuperBlocks, a
developer defines and examines catalogs of libraries
different from the current SystemBuild catalog, and loads in
a library SuperBlock as a read only block. This capability,
solves some of the problems discussed above, but has some
problems which limit its usefulness.

These problems are listed in roughly the order of
importance.

1. All input and output pin names for a File SuperBlock
are invisible to the user. The developer does not know
how to hook up a block for other than a trivially sim-
ple cases.

2. The developer cannot step into the file block to see
what is inside. This makes the block architecture, its

capabilities and limitations, and any relevant com-
ments and text blocks invisible to the developer.
Thus, the File SuperBlock permits read only access in
only the most restricted sense. Interestingly, if a
developer does an interactive simulation, he can step
into the file block.

3. Read only capability is too limited. There is no facil-
ity to rename the block, making it local and unique.
This would be valuable for many reasons. For exam-
ple, BlockScript utilities need to be encapsulated
within SuperBlocks to be accessible as a library. But
once in a simulation, a designer may want to expand
the block to eliminate a level of hierarchy.

Also, many library routines can be considered to be
“templates”. For example, BlockScript has the capa-
bility of being generic with respect to the number of
inputs and outputs, by using u.size and y.size. A util-
ity could be written process N number of inputs or
outputs. The user would load the library block,
change the name so that it becomes local, expand the
superblock that contains it and change N to what ever
he needed.

ASDS OVERVIEW

ASDS is a system to facilitate easy and rapid
construction of any conceivable simulation. This approach is
realized through a library of reusable parts and a strategy to
easily assemble them into applications. [Gottlieb, 1994]

The ASDS architectural design is based on the
understanding that all simulations consist of propagation

Development Teams

Team 1

Quality

Group

Configuration

Group
Assurance Management

(QA) (CM)

- Coding Standards met?
- Requirements met?
- Unit Testing Complete?
- “Integrator” performs and

verifies integration of
changes.

- Performs final integration.
- Performs final QA.
- Updates and maintains

configuration.

Core Group

Team 2

 Figure 2 Three Tier Configuration
Management Scheme for
MATRIXx Relies Primarily on
Manual Processes

6
6

American Institude of Aeronautics and Astronautics

separated by discrete events. The ASDS paradigm insists
that nothing discrete is allowed to take place in the
propagation function. Allowing discrete events within a
propagation step is a common flaw with other simulations
which necessarily leads to tight coupling, reduced
maintainability, and greatly reduced reusability.

At its highest level, the overall simulation control is
captured generically. This concept is shown in Figure 3
below. ASDS implements this concept of propagation
separated by discrete events by using four major elements:
executive, initialization, discrete events, and propagation.
Models, such as environment, vehicle, events, utilities, and
primitives, are built and used to support each of these four
major elements.

Executive

The ASDS executive has two main responsibilities: (1)
manage the overall simulation control flow and (2) facilitate
communication of necessary information among the four
elements of the simulation. Management of the simulation
control flow as shown in Figure 3 is contained in the
simulation driver. This module contains the flow logic and
also defines any unique discrete event functions desired by
the user. Information required to be passed among the
executive, initialization, discrete event, and propagation
elements is contained in a data structure called the
ASDS_Exec record. This data structure consists of the
minimum amount of information necessary to allow proper
communication among the generic parts and with the outside
world.

Initialization

ASDS uses a powerful input engine to support
initialization and re-initialization of simulations. This input
capability is based upon the FORTRAN Namelist feature.
An Ada version of Namelist, obtained from NASA’s Jet
Propulsion Laboratory, was enhanced to provide additional
features. These include multi-file input sources, units
conversion, named phases and datasets, variable-length
arrays, multiple data types, variable-string input, user
comments, user-defined temporary variables, and equation
processing.

ASDS requires each model to be responsible for reading
its own data. To support this, data is grouped within named
datasets, and that dataset name is known by the model
responsible for reading that data. This approach negates the
need for centralized input control and distribution of data,
and thus avoids the use of global data and increases the
modularity of each model.

Discrete Events

A discrete event occurs discretely in a simulation, as
opposed to propagation, which is continuous. A discrete
event in ASDS can be as simple as writing data to a file or
ending a phase, or as complex as executing vehicle flight
software.

The ASDS discrete event is comprised of three parts: (1)
a function which determines when an action is to be
“triggered” (known as the TGO function), (2) the routine(s)
that take the action and, (3) the logic for managing the
triggers and calling the events.

Propagation

The following describes propagation in ASDS: given a
time, determine a state. As such, the method of determining
the state becomes inconsequential to the rest of the
simulation - discrete events are processed using the state
regardless of how it was determined. Therefore, determining
the state in ASDS can be done with either integration or
interpolation. The uniqueness of this approach means that
there is no longer a need for separate executing programs for
trajectory generation (integration) and trajectory post-
processing (interpolation).

The ASDS library contains many integrators, along with
a mature set of high-fidelity perturbation models. The
integrators are implemented generically, and the selection of
which integrator to use is controlled entirely through user
input. Integrators are easily changed during a simulation, the
switch is merely a discrete event. For interpolation, the state
information is typically provided by an input file.

The ASDS Library of Parts

End Of Run
End Of Phase
Flight S/W
Fire Jet

(Re-)Initialize

Check Events

Print
Integrate

Perturbations

Interpolate

YES

NO

DONE

NO

YES

Advance State
One Step

 Figure 3 ASDS Simulation Control and Generalized
Simulation Driver

End of Phase?

End of Run?

7
7

American Institude of Aeronautics and Astronautics

The ASDS library contains reusable parts to support
development of simulations. Experience has shown that
these parts typically provide fifty to ninety per cent of the
total simulation software required [Neal, 1994]. The
remaining simulation software is provided by the developer,
and generally consists of vehicle-unique models, unique
events (and their associated TGO functions), additional
input/initialization, and equations of motion not supplied by
ASDS.

New parts are built for a given simulation application,
with reuse in mind and subsequently are added to the ASDS
library. The library of generic vehicle sensor and effector
models grows in this manner.

The ASDS library of reusable parts is divided into 6 sub-
libraries: executive, environment models, vehicle models,
event models, utilities, and primitives. These sub-libraries
contain the code which implements each of the 4 major
simulation elements discussed earlier, along with lower level
models which support these elements. For example, the
environment models sub-library contains perturbation
models which support propagation, and the vehicle models
sub-library contains vehicle sensor, effector, and flight
software models which support the discrete event of vehicle
on-board processing.

The ASDS library provides a significant amount of
capability with relatively little code. This is a direct
consequence of careful design of each module for reuse.
Since development, testing, and maintenance costs are
typically based directly on the amount of code, this concept
of a carefully designed library of reusable parts translates
into a significant reduction in software lifecycle expense.

Example ASDS Applications

Applications built with ASDS parts, demonstrate a wide
range of domain applicability, rapid prototyping, evolution
of verified, flight certified capability, and substantial reuse of
parts.

All ASDS-built simulations are inherently multi-vehicle;
required memory is dynamically allocated at runtime based
upon the user’s input of how many vehicles are being
simulated. A 3/6/N-DOF simulation “template” contains the
integrated simulation framework (i.e., the 4 major elements
of the simulation) plus the high fidelity environment
perturbations. Known as GENECIS (forGuidance et
Navigationet Control IntegratedSimulation), this template
provides the starting point from which specific applications
are built.

Since ASDS handles a unique vehicle’s processing
(sensors, effectors, flight software) as a discrete event, the
developer independently builds the vehicle-unique parts.
Integration into the simulation is done quickly and efficiently

because GENECIS contains the necessary “hooks” for the
addition of vehicle unique models. This approach makes it
easy for an ASDS application to accommodate models
developed elsewhere, such as encapsulating existing
software from other applications or integrating auto-
generated code from a graphical software development
environment such as MATRIXX

®. Table 1 provides a list of
the major applications built using ASDS parts. Many of the
applications were built using GENECIS as a starting point,
which greatly reduced development time and allowed the
developers to concentrate solely on the application’s vehicle
uniqueness.

Figure 4 shows the amount of reuse provided by the
ASDS library for the first five applications in Table 1. Three
of the five applications reuse greater than seventy per cent of
the library source lines, determined by Ada semi-colons. All
five of the applications reuse nearly half of the library code.
Figure 5 gives, for each application, the amount of reused
library code versus new application code.

REUSING DOCUMENTATION

ASDS documentation applies the same reusable parts
approach taken with software production. ASDS and its
applications are documented using FrameMaker1 and its

Table 1 ASDS-Built Applications

Model Description Lang.

BG14 Variation of parameters special
perturbation method for
propagation

Ada, C

GENECIS 3/6/N-DOF environment
simulation - template for creating
vehicle-unique sims

Ada

STARS* Space Station 6-DOF reboost / 3-
DOF decay (using BG14)

Ada

ARCSIM* 6-DOF multi-vehicle automated
rendezvous & capture (AR&C)

Ada,
C, C++,
Fortran

Threat-Sim* Threat missile 3-DOF powered
flight, 6-DOF coasting flight

Ada

SMAARTS 3-DOF Montecarlo aerobraking Ada
LunEx 3/6-DOF Earth orbit-to-Moon

landing
Ada

R3BTARG/
R3BHALO

Restricted 3 body targeting for
libration point missions & weak
stability boundary applications

Ada

NEAR-Tool Converged, optimized high
precision trajectory sim for
asteroid rendezvous & orbit

Ada

Fast Phi Unrestricted 4-body optimization Ada
Space Shuttle
6-DOF

Ascent, on-orbit, and descent
mission planning simulations

C

Generic 3-
DOF

Generalized multi-vehicle 3-DOF C

* Began with GENECIS simulation framework

8
8

American Institude of Aeronautics and Astronautics

book feature, which permits logically separate entities (i.e.,
separate ASDS models and functions) to be documented
separately. The flexibility offered by this approach allows
quality documentation to be generated and reused for several
different applications, with less cost and less effort.

Existing ASDS documentation includes formulation
guides, user guides, and standards manuals for both ASDS in
general and specific applications. These documents are
available in both paper and on-line (electronic, using
hypertext) form. Additional documents for specific
applications are prepared as required by customers,
including requirements specification, design documents, and
verification reports. ASDS documentation can support both

1. FrameMaker is a registered trademark of Frame
Technology Corporation

MIL-STD-2167A and NASA-STD-2100-91 documentation
standards.

COMBINING ASDS WITH MA TRIXx

ASDS and MATRIXX
® offer unique capabilities, both of

which are required for complete, end-to-end flight software
and vehicle development. MATRIXX

®’s strengths are in the
real-time flight code development environment. ASDS offers

 Figure 4 ASDS Library Code Reuse

5 Applications 4 3 2 1 0

25% 50% 75% 100%

A

p
p

l.
R

eu
se

d

Percent Reuse

 Figure 5 ASDS Application Reuse of Library

5000

10000

15000

20000

25000

0
GENECIS

BG14
ARCSIM STARS

Threat-Sim

So
ur

ce
 L

in
es

 (S
em

i-
co

lo
ns

)

Application-Unique
Reuse Library

Flight
Software

Hardware
Models

Plant
Models

FEU

PlantEngine
(AC-100)

SystemBuild

MATRIXx
Parts Library

ASDS
Parts Library

AutoCode
Real-Time

EnvironmentFlight Code Development
Environment

ASDS Environment

Engineering/Analysis Development

STAMPS
SES-II

ARCSIM
ARDOCK
(other tools)

MATRIXx
Parts Library

ASDS
Parts Library

Flight
Code

Plant

LunEx

 Figure 6 ASDS and MATRIXx Paths to Software Development and Analysis

9
9

American Institude of Aeronautics and Astronautics

a sophisticated engineering simulation and tool development
environment.

The software development paths preferred by the RDL
combine MATRIXX

® and ASDS in a way that takes
advantage of the strengths and capabilities of each. This
combined approach is shown in Figure 6. MATRIXX

® is the
primary component on the path to the real-time flight code
development. ASDS provides the more complex functions
that are difficult or impracticable to build in MATRIXX

® or
functions that have been previously built and validated and
need not be duplicated in MATRIXX

®.

The lower part of the figure shows the path for non-real-
time tool and analysis. ASDS typically provides much
higher fidelity environment models and improved data
capture and processing. This is advantageous when the plant
models built in MATRIXX

® are lower fidelity versions
simplified for real-time execution, or when faster than real-
time is required. The flight code model comes directly from
the MATRIXX

® real-time code, and this is installed and
executed with the ASDS plant. This transition requires
changes to the AutoCode™ template and possibly to the User
Code Blocks which handle hardware specific functions.

Individual models previously developed and validated in
MATRIX X

®, such as an actuator model, are provided to the
ASDS libraries as procedures. This is accomplished via
auto-generating code through ASDS-compatible templates

CONCLUSIONS

Library reuse within the MATRIXX
® software

engineering environment can be significant and successful
for projects using small core teams or skunkworks-type
operations. Larger more classically managed projects such
as ISSA will need automated approaches to library
management. Automated configuration management tools
designed for traditional languages like C or Ada are not well
suited for use with MATRIXX

®, and the MATRIXX
®

product currently has no tools suited for configuration and
library management.

ASDS is designed expressly to take advantage of
software reuse, and has demonstrated considerable success
with this design approach. Configuration management and
library management can take advantage of current tools
commonly available.

REFERENCE

Bordano, A.; Uhde-Lacovara, J.; DeVall, R.; Partin, C.;
Sugano, J.; Doane, K.; Compton, J. “Cooperative GN&C
Development In A Rapid Prototyping Environment”. In
Proceedings of the AIAA Computing in Aerospace 9
Conference (San Diego, CA, Oct. 19-21, 1993). AIAA,

Washington, D.C., AIAA-93-4622-CP, 883-890

Uhde, J.; Weed, D.; McCleary, B.; Wood, R. “The Rapid
Development Process Applied to Soyuz Simulation
Production”. In Proceedings of the European Simulation
Multi-Conference (Barcelona, Spain, June 1-3, 1994).
pp1071, Society for Computer Simulation International,
ISBN 1-56555-028-5

Gottlieb, R.; Neal, S. D. “The Advanced Simulation
Development System (ASDS)”. In proceedings of the
Society for Computer Simulation (SCS) Summer Computer
Simulation Conference (San Diego, July 18-20, 1994).

Neal, S. D. 1994. “Advanced Simulation Development
System (ASDS)- Demonstration of Capability”, MDA-TM-
IRAD94-01, Houston, Tx. (Mar.).

ACKNOWLEDGMENTS
The authors wish to acknowledge the following people

without whose work this project could not have proceeded:

• NASA-JSC: John Craft, Jr., John Ruppert, Bruce Schulz

• MDA-HD: Stan Fernandes, Bret McCleary

• MDA-HB: James Ball, Heiko Jones, John Riel

BIOGRAPHIES

Dr. Jo Uhde is the manager of the RDL at NASA-JSC.
She received her Ph.D. in electrical engineering from
Stevens Institute of Technology, Hoboken, NJ, in 1984, as
well as her Master’s of Engineering, Electrical in 1977, and
her Bachelor’s of Engineering in 1975. She was an instructor
and assistant professor of electrical engineering at Stevens
from 1980 to 1990. She was appointed four times as a
NASA/ASEE Summer Faculty Fellow at NASA-JSC. She is
a member of Tau Beta Pi, Eta Kappa Nu and Sigma Xi.

Daniel Weed is a Senior Engineer with McDonnell
Douglas Aerospace in Houston, TX. He received his BS in
Aerospace Engineering from the University of Texas at
Austin in 1984. Since then he has been involved in
simulation modeling, crew procedures development, and
flight software development, supporting programs at the
Johnson Space Center including the Space Shuttle, the Space
Station, and Space Exploration Initiative projects.

Robert G. Gottlieb holds BS and MS degrees in
Mechanical Engineering from the Massachusetts Institute of
Technology, and a Ph.D. in Aerospace Engineering from the
University of Texas at Austin. Dr. Gottlieb has been involved
in simulation modeling and development for more than 25
years, supporting various Army programs and the Apollo,
Skylab, Space Shuttle, and Space Station programs. He is the
original developer of ASDS, and has designed and developed
most of its key features. He holds several patents, and has
been recognized by NASA for several new technology

10
10

American Institude of Aeronautics and Astronautics

disclosures.

Douglas Neal holds a BS degree in Aerospace
Engineering from Iowa State University, and is a member of
Phi Kappa Phi and Sigma Gamma Tau honor societies. He
has been involved in software and simulation development
for the past 12 years, and has led the Advanced Simulation
Development System effort for the past 3 years, working
most recently to develop object-oriented library parts using
C++.

THE RAPID DEVELOPMENT PROCESS APPLIED TO SOYUZ
SIMULATION PRODUCTION

Jo Uhde-Lacovara Ph.D.
NASA Johnson Space Center

Houston, Texas 77058

Daniel Weed, Bret McCleary, Ron Wood
McDonnell Douglas Aerospace - Space Systems

13100 Space Center Boulevard.
Houston, Texas 77059

ABSTRACT

The Navigation, Control & Aeronautics Division
(NCAD) at the National Aeronautics and Space
Administration-Johnson Space Center (NASA-JSC) is
exploring ways of producing Guidance, Navigation &
Control (GN&C) flight software faster, better and cheaper.
To achieve these goals NCAD established hardware/software
facilities to take an avionics design project from initial
inception through high fidelity real-time, hardware-in-the-
loop (HIL) testing.

This paper concentrates on the use of commercial, off-
the-shelf (COTS) software products to develop the GN&C
algorithms in the form of graphical data flow diagrams, to
automatically generate source code from these diagrams and
to run in a real-time, HIL environment under a rapid
development paradigm.

To evaluate these concepts and tools, NCAD embarked
on a project to build a real-time, six degree-of-freedom
(DOF) simulation of the Soyuz Assured Crew Return
Vehicle (ACRV) flight software (FSW). To date, a
productivity increase of 50% has been seen over traditional
NASA methods for developing engineering simulations.

INTRODUCTION

Current fiscal realities demand that GN&C simulations,
requirements and FSW be developed faster, cheaper and
without any loss to quality. NCAD is exploring new
approaches and processes for the creation of these products
that will significantly reduce space vehicle design costs.
Specific goals for this initiative are as follows:

1) Identify appropriate commercial software
technologies.

2) Demonstrate a subset of these technologies on
selected space vehicle programs.

3) Benchmark cost/schedule performance against past
programs.

TRADITIONAL SOFTWARE DESIGN APPROACH

The traditional FSW development approach starts with a
requirements design phase in which engineers develop and
test candidate GN&C algorithms. A non-real-time
engineering simulation is created in which the performance
of the candidate algorithms is compared. During this phase,
several reviews are scheduled which result in some of the
algorithms being dropped from further consideration. Once
the algorithms are selected, a requirements document is
written from which a separate group of software engineers
writes the FSW. This process is illustrated in Figure 1.

While the GN&C algorithms are being selected, avionics
engineers select the on-board computers and data bus
architecture using preliminary estimates of the number of
lines of GN&C software required. Because the on-board
computers have limited capabilities, scheduling the FSW so
that it runs in real-time and produces the required results is a
difficult process. Real-time simulations are created to aid in
the real-time development.

This process becomes very costly when changes to the
vehicle requirements are made. For example, a change in the
mission requirements may force a change in the FSW
requirements. These changes can require extensive
modifications to the FSW. This necessitates changes in both
the non-real-time and real-time simulations to support the
effort.

THE RAPID DEVELOPMENT PROCESS

An improved approach to developing real-time FSW is to
produce prototype real-time simulations and code
concurrently with the requirements development. Once the
first working prototype of the FSW is developed, HIL testing
is initiated.

This process allows incompatibilities in the software
design, implementation, or hardware selection to be
discovered early in the development. This cycle of
concurrent requirements and software development, and HIL
testing is repeated until acceptable software is produced. The

approach used here is a “spiral” development approach
where developers “build a little, test a little”. This is
illustrated in Figure 2.

THE RAPID DEVELOPMENT LABORATORY

In an effort to evaluate the rapid development process
and tools, NCAD created the Rapid Development
Laboratory (RDL). The RDL is a JSC on-site resource
dedicated to exploring and evaluating new technologies and
processes for FSW and simulation development. In order to
assess these techniques, the RDL team members embarked
on a pilot project to build a real-time, six DOF simulation of
the Soyuz/ ACRV FSW (Bordano 1993).

The project is a teaming effort between personnel from
NASA-JSC, Lockheed Engineering Services Corporation
(LESC) and McDonnell Douglas Aerospace in Houston, TX
(MDA-HD). A cooperative agreement allowed engineers at
JSC to access a similar facility at the McDonnell Douglas
Aerospace site in Huntington Beach, CA (MDA-HB), where
development for the Delta Clipper (DC-X) was performed.

The RDL team used the MATRIXX
®/SystemBuild™

product line available from Integrated Systems Inc. (ISI),

Santa Clara, CA, to build the entire simulation in block
diagram form. Figure 3 shows the application of ISI’s toolset
to the spiral development process.

MATRIX X
®/SystemBuild™ is a graphical software tool

which allows the user to develop data flow block diagrams of
the desired system using available primitives from a palette.
These elementary blocks are organized in groups called
“Superblocks” which become procedures or subtasks. This
leads to highly modular software designs well suited to the
development of generic software libraries and software
reuse. Once the software data flow diagrams are built and
linked together, they are interactively tested in a non real-
time environment. Time and frequency domain analysis are
also performed interactively.

Real-time code is automatically generated using the
AutoCode™ tool to produce source code from the block
diagram representation in FORTRAN, C, or Ada. Legacy
code may be imported into the model via User Code Blocks.
The source code is compiled and run on the AC-100™ real-
time computer to verify real-time and HIL performance.

Engineers skilled in particular
problem domains formulated
detailed requirements for the
systems & subsystems.

Unforeseen problems arose
deep into the schedule during
integrated testing & simulation.

INTEGRATED TESTING &

Guidance

Navigation etc.

Control

Rqmts.

Code

Other organizations inter-
preted the requirements and
translated them into computer
code.

System

Unit

Integrated

Testing

Tests

Subdivision

Component
Translation

REQUIREMENTS
DEFINITION

INTERPRETATION &
IMPLEMENTATION PROBLEM RESOLUTION

Doc.

Flight Computer

Avionics-Related Problems:

- Too Much Code
- Too Little Memory
- and more!

Mission Performance Problems:

- Rqmts. Error
- Translation Error
- Algorithm Deficiencies

Flight Simulation

- etc.

Figure 1: The Traditional Flight Software Development Approach

THE SOYUZ/ACRV SIMULATION

The main goal of the Soyuz/ACRV simulation project is
to produce a real-time GN&C engineering simulator of the
Soyuz/ACRV from the deorbit burn through touchdown. The
Soyuz/ACRV mission profile is shown in Figure 4.

The team took a three phase approach to build the
simulation. Phase 1 built a three DOF simulation with
elementary models which allowed the team to learn the
toolset and process. In Phase 2, the simulation was upgraded
to six DOF with substantially higher fidelity models. Phases
1 and 2 used Apollo flight software models and vehicle data
as the Soyuz data was unavailable. Phase 3 will incorporate
the highest fidelity models deemed necessary, along with the
actual Soyuz flight software algorithms. This phase is in
progress.

The first executable version was built in a matter of days.
Although it had very crude models, it allowed the team to
exercise all steps of the rapid development process short of
flight testing. A basic library of utility functions, such as
vector, matrix, and quaternion manipulation procedures, was
also built during this phase. The first working version used
the “build a little, test a little” philosophy to build new and
more complex models, testing the entire integrated product,
in a real-time environment each step of the way.

The Phase 1 simulation was developed using simple
environment models such as a constant coefficient (CL, CD)
aerodynamic model, an exponential atmosphere model, and
a central force gravity model.

The FSW models developed for Phase 1 included the
most basic guidance, navigation, and flight control
algorithms. The deorbit guidance routine assumed an initial
circular orbit and targeted a new orbit with a specified target
perigee. The entry guidance was open-loop and steered to a
constant bank angle. The angle-of-attack and sideslip angles
were set to constant values to simplistically model
aerodynamic trim. A perfect navigation model was used in

the flight software. A choice of perfect or filtered attitude
control was provided in the flight control module. The filter
was a second order digital filter with rate and acceleration
limiting.

The simulation size increased by a factor of six for Phase
2. All Phase 1 models were upgraded and many additional
models were developed. The entire simulation was
reorganized to enhance modularity. The simulation was
redesigned so that all mission constants, vehicle data, and
environmental parameters were read from input files. Both
second and fourth order Runge-Kutta plant model integrators
were developed to integrate state parameters.

Two environment models were added: a new atmosphere
model and a new gravity model. The simulation
accommodated all atmospheric density and speed of sound
data that are a monotonic function of altitude. The
simulation read in all atmospheric data from a file. A 4x0
gravity model was developed and incorporated into the
Phase 2 plant model.

New mass properties, propulsion, and aerodynamics
models were developed, tested, and implemented in Phase 2.
All the models were data driven. The mass properties model
was designed to be compatible with both the Apollo and
Soyuz vehicles with the mass properties of a vehicle input on
an element by element basis. Dry elements used mass,
Center-of-Gravity (CG), and moment of inertia data while
the tank elements required mass, CG, and tank ullage. This
data was used to compute the mass properties for each
vehicle component and the entire vehicle.

The propulsion model was designed for the Soyuz
vehicle, but can be used for any vehicle with one variable
thrust bi-propellent main engine and up to 26 bi-propellent
Reaction Control System (RCS) jets on the Service Module
and 8 mono-propellent RCS jets on the Entry Module. The
thrust magnitude, location, direction, specific impulse (Isp),
and mixture ratio are required data inputs for each RCS jet.

Figure 2: The Spiral Development Process

System Rqmts
Definition

Graphically Simulate

System

System
Behavior

Generate Code
Non-Real-Time

Testing
HIL

Testing

Revise Rqmts.

Revise Design

Design
Automatically Flight

Testing

The aerodynamics models included a vehicle model and
two parachute models. The vehicle model defined
aerodynamic coefficients as a function of Mach number,
angle-of-attack, and sideslip angle. Rate damping
coefficients were also included. The parachute models
deployed the parachutes in reefed stages to realistically
model the increase in drag during parachute deployment.

Navigation user parameter processing was developed to
compute deorbit and entry guidance parameters. A closed-
loop deorbit guidance as well as the Apollo entry guidance
and flight control systems were developed, tested, and
implemented.

The Soyuz 6-DOF simulation was tested in real-time
using the AC-100™. The AC-100™ hardware contains
digital, analog, serial, and ethernet input and output
capability. The AC-100™ package contains the all software
needed to generate, compile, link, and run user code on the
processor. The simulation was monitored via interactive
animation (IA), an AC-100™ tool which allows the user to
quickly develop real-time displays using icons such as strip
charts, digital output, push-buttons, and sliders.

The simulation was run in several different
configurations including a single i860 processor, a single

80386 processor, and the plant model running on the i860
and the FSW running on the 80386. All tests showed no
frame overrun errors. Inputs from or outputs to external
hardware can be easily defined through the hardware
connection editor (HCE) of the AC-100™. A rotational hand-
controller was connected to the AC-100™, and the
developers exercised the simulation by providing real-time
inputs to the flight control system.

Several 3-dimensional vehicle animation displays were
developed to enhance the simulation demonstration. To
minimize the development cost, many of the Soyuz graphics
were obtained from other ACRV or Space Station projects.
The displays were animated using the Tree Display Manager
(TDM) running on a Silicon Graphics workstation. The
displays were driven by simulation data output in real-time
from the AC-100™. The data was passed from the AC-
100™to the Silicon Graphics workstation using a serial data
communications line. Software was written to extract the
data from the serial port and load it into TDM buffers.

SIMULATION PROJECT METRICS

Table 1 shows each of the Phase 2 metrics compared
against the Phase 1 metrics. The results show that

Figure 3: The Application of The ISI Toolset to Spiral Development

SystemBuild

Z +.5
Z + 3z + 0.2

Z
Z - 1

Frequency & Time

Interactive

Domain Analysis

Animation

AutoCode

I/O
CPU 10

CPU.
CPU 3

CPU 2
CPU 1

AC-100
Power On
Error
Real Time

Displays
Sensors
Actuators
Test Equip.

Embedded
Target

Processor

Sensors
Actuators
Telemetry

MATRIXx

Compile

Link

Download

V
al

ue

Time

Speed Set

On

Off

Task 1

Task 2

Task 3

Task 4 A
ut

om
at

ic
S

ch
ed

ul
er

R
ea

l-T
im

e
O

S
 D

ev
ic

e
D

riv
er

s

System

Non-Real-Time
Simulation

Automated Documentation

Ada
C
FORTRAN

Requirements

approximately 22 source lines of code (SLOC) were
developed per staff-day. This is a slight improvement from
the Phase 1 productivity numbers. Since Phase 1 included
much time spent on training, developing the process,
building reuse libraries, and initial bug resolution, a larger
increase in productivity was anticipated, from Phases 1 to 2.

The COnstructive COst MOdel (COCOMO) was used to
produce an estimate of the number of staff-hours required to
complete the same project with traditional software
development approaches. The COCOMO model estimated
that 3400 and 11658 staff-hours should be required to
produce Phases 1 and 2 respectively. The productivity as
compared to the COCOMO model dropped from Phase 1 to
Phase 2.

This loss of productivity was primarily caused by several
bugs in the ISI tool. Problems were also encountered when
the simulation became too large to be supported by the
production release of the tool. The RDL team established a
process for refining discovered bugs down to simple test
cases, where possible, and then passing these along to ISI

personnel. This relationship with the vendor allowed for the
bugs to be resolved, and for the capabilities of the tool to be
expanded.

LESSONS LEARNED

A summary of some of the lessons learned throughout the
Soyuz simulation development are given below:

• A small, well-trained, and diverse team is most efficient
when following the rapid development process.

• An executive group should be organized at project start-
up. This group should be responsible for common model
development, testing, documentation, and configuration
control.

• A set of strict, but minimal, coding standards results in a
more homogeneous product. Configuration control and
unit testing procedures should be defined early in the
project. A team should be set up to review all models
before integration.

• The coding standards and sharing of common models
should be integrated across multiple rapid development
projects.

Deorbit Burn

Separate
from Station

Entry Interface

Chute Deploy and
Landing

Coast to EI

Ascent and Service Module
Separation

Figure 4: Soyuz Simulation Trajectory Modeling

• Unit test every model. It is very difficult when using
MATRIX X

® to find an error during integrated testing.
The unit testing procedure should require that expected
results from the test be documented before the test is
completed. To minimize the integration testing time, all
models should be tested in the baseline simulation
before being formally integrated.

• Real-time issues become readily apparent when using
the MATRIXX

® tool. The software design can be modi-
fied early in the project to account for real-time design
issues.

• A large amount of time is spent in finding workarounds
for MATRIX X

® bugs. Allocate a percentage of project
development time to MATRIXX

® bug resolution. Some
bugs are difficult and time-consuming to find and fix, or
provide workarounds for.

• Many enhancements to the MATRIXX
® tool are needed.

Some desirable features of modern programming lan-
guages are not available yet. The Soyuz/ACRV simula-
tion stretched the MATRIXX

® tool to its limits. The tool
must grow in order to support very large-scale simula-
tions.

CONCLUSIONS AND FUTURE PLANS

One of the main lessons learned from this project is that
domain experts can develop GN&C software with significant
productivity increases, yet work in their native language, that
of the block diagram. However, the toolset, while a good first
step in the rapid design of GN&C FSW is not completely
mature. Many enhancements are needed before these tools
are optimized for development of GN&C systems. This
project has pushed the toolset to its limits due to both the
size and complexity of the model. This has led to a good
working relationship with the vendor as the toolset is refined.

There is interest in using the Soyuz/ACRV simulation as
the basis for a mid-fidelity trainer for flight crew and mission
operations personnel at NASA-JSC. The RDL has also been
proposed as the hub of a distributed simulation environment
for early integration of FSW and hardware elements for

International Space Station Freedom. The RDL supports a
Mosaic exhibit on the NASA-JSC home page. There are
plans to link this to an anonymous File Transfer Protocol
(FTP) site to allow model and utility sharing with other users
of MATRIX X

®

REFERENCE

Bordano, A.; Uhde-Lacovara, J.; DeVall, R.; Partin, C.; Sug-
ano, J.; Doane, K.; Compton, J. “Cooperative GN&C Devel-
opment In A Rapid Prototyping Environment.” In
Proceedings of the AIAA Computing in Aerospace 9 Confer-
ence (San Diego, CA, Oct. 19-21, 1993). AIAA, Washington,
D.C., AIAA-93-4622-CP, 883-890

ACKNOWLEDGMENTS

The authors wish to acknowledge the following people
without whose work this project could not have proceeded:

NASA-JSC: John Craft, Jr., John Ruppert, Bruce Schulz

MDA-HD: Stan Fernandes, Joo Ahn Lee, Brian Rishikof,
Lou Zyla

MDA-HB: James Ball, Heiko Jones, John Riel

LESC: Mike Gulizia, Kent Kaiser, Ron Smith, Marv Walton

BIOGRAPHY

JO UHDE-LACOVARA is the manager of the RDL at
NASA-JSC. She received her Ph.D. in electrical engineering
from Stevens Institute of Technology, Hoboken, NJ, in 1984,
as well as her Master’s of Engineering, Electrical in 1977,
and her Bachelor’s of Engineering in 1975. She was an
instructor and assistant professor of electrical engineering at
Stevens from 1980 to 1990. She was appointed four times as
a NASA/ASEE Summer Faculty Fellow at NASA-JSC. She
is a member of Tau Beta Pi, Eta Kappa Nu and Sigma Xi.

Table 1: Soyuz/ACRV Simulation Phase 1 and 2 Metrics

Phase 1 Phase 2

Number of Superblocks 55 371

Number of SLOC 4102 25045

Estimated Total Staff-Hours 1830 7720

SLOC per staff-day (assumes re-use of Phase 1 code) 18 22

Approximate Productivity (Actual Vs. COCOMO)
Productivity Increase

185%
85%

150%
50%

We are terribly sorry, but
this document is not yet

available on-line.

We apologize for the
inconvenience.

	Ref04.pdf
	1.0 Introduction
	1.1 Identification of Document
	1.2 Scope of Document
	1.3 Purpose and Objectives of Document
	1.4 Document Status and Schedule
	1.5 Document Organization and Roll-Out

	2.0 Related Documentation
	2.1 Parent Documents
	2.2 Applicable Documents
	1. MDA-W, "Software Engineering Process Manual", V...
	2. NASA-JSC, "NASA Software Documention Standard: ...
	3. MDA-HD, "Houston Division Software Configuratio...

	2.3 Information Documents
	1. SEI, "Key Practices of the Capability Maturity ...

	4.0 Configuration Control
	4.1 Configuration Control Responsibilities
	4.1.1 Project Manager (PM)
	4.1.2 Project Software Manager (PSM)
	4.1.3 Software Configuration Management (SCM) Grou...
	4.1.4 Software Review Boards (CCB)
	4.1.4.1 Current Status
	4.1.4.2 Action Item Review
	4.1.4.3 Change Request/Discrepancy Report Review
	4.1.4.4 User Suggestions
	4.1.4.5 Delivery Schedule

	4.2 Product Delivery and Configuration Identificat...
	4.2.1 Version Description

	4.3 Configuration Change Control
	4.3.1 Software Configuration Control
	1. All source code modules for each delivered prod...
	2. Incremental changes to source code are identifi...
	3. Security/recoverability of the source code can ...

	4.3.2 Incremental Integration and Testing Process
	4.3.3 Version Upgrade Process
	4.3.4 Documentation Process
	4.3.4.1 Formulation Manual
	4.3.4.2 User’s Manual
	4.3.4.3 Programmer’s Manual

	4.3.5 Mission Data Acquisition

	4.4 Configuration Status Accounting

	5.0 RDL Process Descriptions
	5.1 Software Configuration Control Process
	5.1.1 Overview of the change process
	1. User/Developer/CCB member (i.e. requestor) fill...
	2. Requestor brings a copy of the form to a CCB me...
	3. The CCB decides to accept or decline the change...
	a. Assign priority.
	b. Determine which version the change will be appl...
	c. If the change is to be applied to the next rele...

	4. The developer will design and test the modifica...
	a. The developer will research the change request ...
	b. If the modification is complicated or if there ...
	c. The developer will open a Change Action form to...
	d. The developer will use a directory copied from ...
	e. The developer will check out (see 5.1.3 “Instru...
	f. The developer will implement all changes, perfo...
	g. The developer will bring the completed Change A...

	5. The CCB will review the developers change actio...
	a. The CCB will determine into which build the cha...
	b. The developer will check in the modifications i...
	c. The developer will supply the completed Change ...
	d. The developer will supply one hard-copy of the ...

	6. The CCB/builder will build the version with the...
	a. The CCB/builder will review with the developers...
	b. The CCB/builder will notify the requestor that ...
	c. Finally, the CCB/builder will make a build sub-...

	5.1.2 Description of files
	5.1.3 Instructions for checking out Source Code
	5.1.3.1 Checking out source code
	5.1.3.2 Checking in source code

	5.1.4 Process for adding or modifying entries in r...
	1. The FileMaker Pro based version of the data bas...
	2. You will find what you need in the folder calle...
	3. If you attempt to open the file "RDL Master Pro...
	4. The other file titled "RDL Problem Reporting SC...
	5. When you have completed the record, you can sto...
	6. Here's how to do that: First, you will have ope...
	7. Once you have finished the import, type command...
	8. The system is set up to allow anyone to open th...
	9. Caution: If someone opens one of the files and ...

	5.1.5 Process for generating status reports
	5.1.5.1 RDL project bi-weekly test status report
	5.1.5.2 RDL project test report

	5.1.6 Allowable entries and definitions for Status...
	5.1.7 Process of archiving forms for a version rel...
	1. cd ~”rdlog”/ccb
	2. Create a new directory for storing the archived...
	3. Copy all files that are in the Report_Book (inc...
	4. Create a Change_Action_Forms directory in the V...
	5. Make sure that all CR and DR that were implemen...
	1. For each of the tables (Action_Item_Report, Cha...
	a. Open the table file.
	b. Remove the forms that have been closed from the...
	c. On the first body page of the form change the p...
	d. Using the paragraph designer, modify Page defin...

	2. The Wish_List_Future_Versions should be reviewe...
	3. Create new status reports for each file (proces...

	5.3 Version Upgrade Process
	5.3.1 Version Baseline
	5.3.2 New Development Version Creation
	1. Write a CR that states to create a new version ...
	2. In directory ~”rdlog”, create a new directory s...
	3. Edit the new version root (~”rdlog”/version_Y) ...
	4. Present results of the creation of the new vers...
	a. any problems found during the new version creat...
	b. mission test cases that need to be deleted.
	c. go/no-go recommendation for the first build in ...

	5. Perform the version build (see 5.2 Incremental ...
	6. Verify the build (see 5.2 Incremental Integrati...
	7. Present results to the CCB.
	8. Unlock the permissions in the directories in th...
	9. Announce the existence and readiness of the new...

	5.4 Product Delivery Process
	5.4.1 Version Description

	5.5 Documentation Process
	5.5.1 Formulation Manual
	5.5.2 User’s Manual
	5.5.3 Programmer’s Manual

	5.6 Mission Data Acquisition Process
	1. Gathering the input data
	2. Executing the processors to generate RDL produc...
	3. Verifying the results

	6.0 Acronyms and Abbreviations
	7.0 Glossary
	8.1 GITF Processes
	TABLE 8-1 GITF Processes

	8.2 GITF Staffing
	TABLE 8-1 GITF Staffing
	8.3 RDL Deliveries
	8.3.1 Product delivery process

	overview.pdf
	3.0 Configuration Management Process Overview
	3.1 Review Board
	3.2 Software Engineering Staff
	3.3 End User Community

	incremental_integration_process.pdf
	5.2 Incremental Integration and Testing Process
	5.2.1 Build Process Preparation
	1. A build date must be selected that is indicativ...
	a. The build_date in the code file ~”rdlog”/versio...

	2. Review the Change Action Form (CA) for each CR ...
	3. The builder then updates the build report’s, Re...

	5.2.2 Normal Build Process: Code and Executable Up...
	1. The builder, having checked out all the files h...
	2. When modifying a SuperBlock, document the chang...
	3. Manual configuration management introduces some...
	a. Always save SuperBlock changes in ASCII format....
	b. Be careful not to document changes that have no...
	c. On the same line, remember to document all chan...

	4. Warning: As a means of determining the changes ...
	5. After all changes have been made, documentation...

	5.2.3 Normal Build Process: Verification
	1. The test case verification process by reviewing...
	2. Normally, the actual differences of each test c...

	5.2.4 Abnormal Build Process: Corrective Action
	1. If minor code corrections are required. The bui...
	2. Another possible build problem experienced is o...

	appendices.pdf
	8.0 Appendices

